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Chapter 1

INTRODUCTION TO MATRICES

1.1 What is a Matrix?

Some things have an amazing number of uses. The wheel, for

instance, reduces the force needed to move an ancient man's cart

or a modern man's automobile; it is used as a steering wheel, in

the gear system of a machine, in a roulette wheel, and so on. In

mathematics, matrices also have many uses. First recognized and

used 100 years ago by a British mathematician, Arthur Cayley (1821-

1895), today they are useful to physicists, biologists, econo-

mists, agronomists, sociologists, psychologists, and many others.

Our complex society requires many numerical records. For

instance, a manufacturing concern has three plants each

making electronic equipment. The equipment requires 4 distinct

parts called A, B, C, and D. Factory I uses 30 A-parts, 43

B-parts, 37 C-parts, and 16 D-parts daily; Factory II uses

25 Aparts, 15 B-parts, 30 C-parts and 12 D-parts daily; Factory III

uses 61 A-parts, 50 B-parts, 55 C-parts and 30 D-parts daily.

It is difficult to remember these data or compare them wha

presented in this manner. However, if we write them in a

rectangular table, we obtain a compact summary of all the data.



Part
B

A 1

C

D 1

Factory

I II III

43 15

30 25 61

50

37 30 55

16 12 30

30 25 61

43 15 50

37 30 55

16 12 30

Figure 1.1

If we separate the rectangular table from the headings and

place it in brackets we obtain a matrix.

Definition. A matrix is a rectangular table of numbers

arranged in rows (horizontal alignments) and

columns (vertical alignments).

The matrix in Figure 1.1 has 4 rows and 3 columns. We say

it has dimension 4 x 3, read "four by three." The number of

rows is always given first in stating the dimension. The

first row is the top row; the first column is at the left.

The names of the factories and of the parts, given at the

left in Figure 1.1, are not a part of the matrix; they merely

describe the numbers which make up the matrix.

For a second example of a matrix, let us consider the

problem of a traffic manager for a company with factories in

Bridgeport, Conn., Newport, R.I., Salem, Mass., and Brattleboro,

Vt. He must know the distance between any pair of factories.

A chart provides him with easy access to the data (see Figure 1.2).



Bridge-
port

Newport

Salem

Brattle
boro

Bridge-
port

Newport Salem Brattle-
boro

.
0

71

171

115

71

0

85

135

171

85

0

104

1151

135

104

0

0

71

171

115

71

0

85

135

171

85

0

104

115

135

104

0

Figure 1.2

As you see, the matrix of this chart has dimension 4 x 4.

The number in the first row, first column is 0. There is also a

0 in the second row, second column; also in the third row, third

column; also in the fourth row, fourth column. This last

statement can be abbreviated if we say: The number in the

ith row, ith column is 0 for i = 1,2,3,4. Another interesting

feature of this matrix is the fact that the number in the

first row, second column and the number in the second row,

first column is the same number (71). We can abbreviate this

statement too, if we let a12 represent the number in the first

row, second column, and aal represent the number in the second

row, first column, by saying ata = a21. Using similar repre-

sentation we note: 9.13 = asi, a14 = a41, a23 = a32, a24 = a42,

a34 = a43. In fact we can abbreviate all these statements

still further by writing aii = 0 for i = 1,2,3,4 and aij = aji

for 14,1 = 1,2,3,4.

For a third example of a matrix you are reminded of a



table, used in Course I (see Figure 1.3), for the operational

system (z4,). (It is called a "Cayley Table," named after

Arthur Cayley who first used the name "matrix.")

o 1 2. 3

0 o 0 0 0

1 o 1 2 3

2 0 2 0 2

3 o 3 2 1

o

0

o

0

0 0 0

1 2 3

2 0 2

II
3 2 1

Figure 1.3

Like the preceding matrix this is a square matrix having

the same number of rows as columns. We say it has order 4.

1.2 r,xercises

1. The Department of Labor reported the following table

to show, in percents, the educational level of workers

in various occupations, for'1966.

None Elem. H.S. College Graduate

Professional and technical 0 l.4 21.5 49.0 28.0

Farmers and farm managers 1.1 52.6 39.9 6.o .3

Managers,' except farms .2 12.6 49.8 32.8 4.7

Clerical .1 5.5 73.3 20.4 .8

Sales .2 11.4 61.6 25.3

Craftsmen and foremen .2 26.5 64.4 8.6 .3

Operatives .8 32.7 61.6 4.6 .2

Service .8 33.5 57.8 7.7 .2

Farm laborers and foremen 5.1 50.9 39.3 4.7

Laborers, except farm

and mine
1.9 44.o 49.7 4.1 .2

9



(a) What are the dimensions of the matrix of this table?

(b) What is els? ass?

(c) What is the set fa
ij

: i = 3, 3 .5)? Compare

this with the set (ail :

(d) What is the greatest entry in the first row?

What does it signify?

(e) What is the greatest entry in the first column?

What does it signify?

(f) What are the greatest and least numbers in the

fifth row? What do they signify?

What are the greatest and least numbers in the

fifth column? What do they signify?

Obtain an example of a matrix that appears in a

newspaper or another similar source. What are

the dimensions of the matrix?

(b) Does the stock market report that appears daily in

a newspaper contain a matrix? Support your answer.

3. Study the table below, which lists the continents (except

Antarctica).

Asia

Africa

N. America

S. Merida

Europe

AuStralia

127.1

136.0

134.0

120.0

122.0

127.5

indicate "below sea*The negative numbers in:this column



(a) What are the dimensions of the matrix of this table?

(b) Let a
ij be the number in the ith row, jth column. Find

aim, etat, mss.

(c) List the set of numbers (a
ij : i = 2, j < 5)

(d) List the set of numbers (ail : i < 5)

(e) List the se of numbers (aij = 3 + 1, 5)

(f) List the set of numbers (aij : 3 = i + 1 for all

possible values of it

(g) List the set of numbers (aij : i = 2j, 3 S 3)

1.3 Using Matrices to Describe Complex Situations

This is an important use for matrices as our examples will

show. For our first example we take what is called a pay-off ma-

trix, used in Game Theory. Suppose Joe and Pete play a game in

which each tosses a coin. They agree on the following rules: if

both coins fall heads, Joe pays Pete 3 cents; if both fall tails,

Joe pays Pete 4 centsvif Petels coin falls heads and Joe's coin

falls tails, Pete pays Joe 2 cents; finally if Petels coin falls

tails and Joels coin falls heads then Pete pays Joe 5 cents.

Indeed, for some, these rules may be bewildering. How much

clearer they become when organized as a matrix (see Figure 1.4).



The numbers in this matrix tell how much Pete receives. If the

number is positive he gains; if negative he "receives" a negative

amount, which of course means he loses and forfeits an amount

to Joe.

For our second example consider four cities, A, B, C, and D

that are connected, if at all, by two-way bus routes, as shown in

Figure 1.5.

Figure 1.5

As you see there are three bus routes out of A, one of them to

B, one to D, and one to C. Out of B there are three routes,

two of them to D, the other'to A. A complete description of

this network of routes may overwhelm some readers. How much

clearer to put the description in matrix form (see Figure 1.6).



In this matrix we write a "1" for ale to show one bus route between

A and B; we write a "2" in a4 s, to show.two bus routes between D

and B, and so on. For all i, ail = 0 to show no bus routes

between a town and itself. Note that a
ij

= a
Ji

for all i and i.

Why is this so?

Our third example shows how to use matrices to describe

a pair of linear equations in two variables. Suppose the pair of

equations is:

3x + 2y = 8

4x - y = -2

If we detach the coefficients from x and y, leaving each

[I

in its position we get a coefficient matrix, namely 3 2 .

4 -1

The brackets about the coefficients are there to denote a matrix.

This matrix, you see, is written without an explanatory column

or row. These are omitted on the agreement that the first row

displays the coefficients of the first equation and the second

row displays those of the second equation, while the first column

displays the coefficients of x and the second those of y.

If we write a third column giving the constants that appear

at the right of the equal sign, then we obtain a 2x3 matrix (see

Plgure 1.7).



1.4 Exercises

1. Three people, A,B, and C play a game. By the rules, if A

beats B, A gets 40 cents from B; if A beats C, A gets 30

cents from C; if B beats A, B gets 35 cents from A; if B

beats C, B gets 25 cents from C; if C beats A, C gets 38

cents from A; if C beats B, C gets 32 cents from B. Display

these pay-offs as a matrix in which the winner is read at

the left of each row, and the loser at the top of each

column. For ail write 0. Is a = a for any values of

i or j?

2. A and B play a game in which each rolls a single die

(having six faces showing numerals 1,2,3,4,5,6). If

the sum of the numbers appearing on the top'faces is even

B pays A that number of dollars. If the sum is odd, then

A pays that number of dollars to B. Using positive

and negative numbers display these pay-offs in a 6 x 6

matrix. (See the first example in Section 1.3 for a

suggestion.)

3. The diagrams below represent two way bus routes connecting

towns A,B,C, and D. Describe, in a 4 x 4 matrix, the

number of routes between each pair of towns.



(c)

( e )

- 10 -

D

(d)

A 6-47 c

D

4. For each set of equations listed below write a

matrix of coefficients and constants.

(a) 3x + 5y = 8 (d) x 4- y z = 3

4x 2y =0 x y = 2

(b) 3x + 2y

2x 3y + z

2x + 3y =

x + 2y =

x -4y=

(c)
(e)

y + z = 1

.2x - y 5

(f) 2x ity z

1.5 Operations on Matrices

Alice is 13 Years old and Daniel is 10. One might, ask:

Eklif much older isAlice? The 0Perstica of subtraction is designed
. ,

to answer this questian and many others 3.ika it. In faCts the

purPose of operations on nniabere is to gain knowledge about number

situations over and beyond what the numbers themselves tell.



So too with matrices and operations on matrices.

In this section we see, using an example, how three operat:'.ons

involving matrices are designed to give inforiation beyond that

given by each matrix. This example is about a man who contracts

to build two models of homes that we call A and B. He operates

in three towns, Huntington, Smithtown, and Merrick. Matrix P,

shown in Figure 1.8,tolls how many homes of each model he

built in each town in 1966. Matrix Q tells the same story

for 1967.

1966 1967

A B A B

Huntington 3

Smithtown 4 5 [2 731

Merrick 3 3 4 3

Matrix P Matrix Q

Figure 1.8

One might ask: How many of each mcdel home, in each town, did

he build in both years? To find the answer it is natural to add

the entries in P and Q that occupy corresponding places, and to

write the answer in the same space of a third matrix which we

call R in Figure 1.9.



12

Addition of Matrices

It is important to note that P, Q, and R have the same dimen-

sions, namely 3 x 2. Matrices can be added only when they

have the same number of rows and the same number of columns,

that is the same dimensions.

A second question might be asked. How many of each model

should the man build in 1968, in each town, to double his 1966

production? It is natural, in answering this question, to double

each number in P. And it is also natural to call this newly formed

matrix 2P. We illustrate with Figure 1.10.

8 3

3 3.
[1.6

2P = 2 4 5 . 8 10

6 6

Figure 1.10

Multiplication of a Matrix by a Scalar

Note we have multiplied a matrix by another kind of'objects the

real number 2. In this context we call the real nuMber a scalar,

and the operation is called multiplying a matritky a scalar.

Continuing, our examPle suppose the model A home requires

6 doors and. 8 windows, while the model B home requires 5 doors

and 7 windows. This information can be easily displayed in tabu-

lar form (see Figure 1.11). We call the matrix of this table S.
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A third question is: How many doors did the man use in

each town in 1967, and how many windows? To obtain the answer

we use:

[6
7

8]
Q = 2 7 and S =

5
4 31

A common sense way to find the answer is to calculate as follows:

For Htntington we need 6.6 doors for model A and 3.5 doors for

model B, making a total of 6.6 + 3.5 or 51 doors. For Smithtown

we need 2.6 for model A and 7.5 doors for model B, making a total

of 2.6 + 7.5 or 47 doors. For Merrick we need 4.6 + 3.5 or a to-

tal of 39 doors.

A similar calculation finds the numbers of windows.

For Htntington we need 6.8 + 3.7 or 69 windows.

For Smithtown we need 2.8 + 7.7 or 65 windows.

For Merrick we need 4.8 + 3.7 or 53 windows.

Putting these results together in matrix form, we get

D W

[-.

51 69.

S 47 65

39 53

We call this matrix T.

These calculations involve multiplications and additions

on scalars. But we regard the entire calculation as our matrix

operation, called Multiplication on matrices. The operation,

without explanation, is shown in Figure 1.12.



4
[2.

3

6[

5

8

7

-14

2.6

4.6

+ 3.5

+ 7.5

+ 3.5

6.8

2.8

4.8

+ 3.7

+ 7.7

+ 3.7

51

47

39

69

65

53

= T

Figure 1.12

This matrix multiplication is possible because the number of

columns in Q is the same as the number of rows in S, and the

product matrix T has as many rows as Q and as many columns as S.

Multiplying matrices may seen strange and complicated. With

experience it becomes familiar and easy. This will happen sooner

if you see a pattern in the operation. Study the three partial

multiplications in Figure 1.13 and try to find'that pattern.

R

first row

S

[5

first column

T

6.6 +3.5

first row, first column entry
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In general, to find the entry in the product matrix for

the ith row, ith column, multiply in pairs, the first number in

the ith row of the first matrix and the first number in the ith

column of the second matrix, do the same for the second numbers,

the third numbers, and so on. Then add.these products.

Cost

Door 8

Window 10

Figure 1.14

C

[101

Continuing our example, suppose doors cost $8 each and

windows coat $10 each. This information can be displayed in a

2x1 matrix shown in Figure 1.14 and named C. We ask another

question: What, in 1967, for each town, was the total cost of

doors and windows? It is a happy fact that the three answers

are found by the matrix multiplication illustrated as Figure

1.15. Cost

[-.

1098 H

1026 S

842 M

D

Note the dimension of each matrix in this multiplication:

3x2 C: 2x1 D: 3xl.
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The essential features concerning dimensions are:

(1) The number of columns of T is equal to the number

of rows of C.

(2) The dimensions of D are the number of rows of T and

the number of columns of C.

1.6 Exercises

1. A man builds 3 model homes A,B, and C, in two towns P and

Q. His contruction program for two years is given below

and the associated matrices are named D and E.

1967 1968

A H C A B C

P

4 0 2 5 0

1 2]

3

3 2 1

Matrix D Matrix E

This need for doors and windows for each model is given

by Matrix F,

and the cost in'dollars'of doors and windows are given in Matrix G.

Give the dimensions of each of the Matrices D,E .
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(b) Using an operation on matricesofind the number of each

model home built in both years in each town.

(c) Can one add D and F? Explain.

(d) Using an operation on matrices find how many doors

and how many windows were used in each town in 1967.

(e) Can one multiply D and E? Explain.

(f) Interpret the meaning of EF, of FG.

(g) Interpret the meaning of (EF)G and express it as a

single matrix. Do the same for E(FG)

(h) Find the matrix that displeys the 1969 construction

program for each town if the 1969 program is three

times the 1967 program.

2. If possible, add..If not explain why not.

1 2
(a)

3 4
+

3 -2
(b) [ +

,3 4
[

-1 2
1 2

3 2 1 -3 -1 2

( )

4 6 8 0 0 1

If possible multiply. If not possible explain why not.



(e) [ . 3

5

1

(g)

2

1 2 -1

(1)

2 1]
4 6 8[3.

- 18 -

0 a b
4

0 1
6

-3 a 0

2
(h)

[3 -1

0 oi
2

(i)

a b

[a 1[c di

ra. 0 a b 0 1 a b
(k)

[0 0
(1)

[1 0.] d

4. If possible express each of the following as a single

matrix. If not possible explain, why not.

4

(a) 4 [13 (b) i[l] (c)
0 0

2 0 4

[2 0 -4
3



Do you think the product will be the same

are commuted? Try it and see.

6. Is the product 3
2 - 2113

the same as the product
1 1

if matrices

[13. -1 [5.
1 2 1 2

? Try it and see.

Find [1. °
0 1

if A is the matrix:

(a) [! L2 41 4
(b)

2 -1
(c)

[.a. 1

0
8. Using the data in Exercise 7 find 1 for each A.

0 1

1.7 Matrices and Coded.Messages

A simple way to code a message is to substitute for each

letter in the message a numeral, as given, for instance, in

Figure 1.16.

J K L M

10 11 12 13

NO P Q R 3 T U V W X Z

14 15 16 17 18 19 20 21 22 23 24 25 26.

Filiure 1.16

Thus the message GOOD LUCK would be sent as 7-15-15-4

12-21-3 11. The recipient of the message then decodes using the
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inverse substitution in Figure 1.16. An outsider can easily

decode a message of this type by noting the frequency of numerals.

One would expect, in general, the most frequent numeral to

correspond to E, the next frequent numeral to T, and so on. To

make it more difficult for an outsider to decode a message one

can use a coding matrix in conjunction with the substitution

transformation described above. After using the substitution

determined by Figure 1.16 the numerals are arranged in 2x2 matrices.

For GOOD LUCK this gives

15

i

4 3 11 .

Then we introduce a coding matrix, say C = 2 !], multiplying

[I
1 2

(on the right) each matrix in the message by C.

[I

7 15 2 3 14

15 4 1 2 30

II[I

12 211 2 3 24

L3 :11J 1 2 6

+ 15 21 + 30 29 51
=

+ 4 45 4' 8 34 53

-.1I

+ 21 36 + 42 45 78

+ 11 9 + 22 17 31 .

The coded message is 29-51-34-53 45- 78- 17 -31.. The recipient

of this message has the problem of decoding it. First he restores

the matrices and then multiplies each re8 red trix by a

r
decoding matrix which in this case is D =

2 -3

-1 2
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[45 [12 -3] [90 + (-78) (-135)+156] 12 21]

17 31 -1 2 34 + (-31) (-51)+ 62 3 11

Finally the inverse substitution, according to Figure 1.16,

reveals the message GOOD LUCK.

The choice of coding and decoding matrices involves some

mathematics that we will consider in Chapter 3.

1.8 Exercises

1. Using the coding method described above with the coding

matrix C = 2 3 , code each of the following messages:
1 2

(a) COME HOME

(b) WHERE ARE YOU. (Group as follows: WHERIEAREIYOUX.

The X fills the empty space in the last 2x2 matrix).

2, Using the decoding matrix D = 2 -31 decode the following
r 1 21.

messages.

(a) 58-97 27-53 25-49 27-53

(b) 30-51 52-89 35-65-51-87

In this exercise we describe a method fOr solving a pair of

linear eqUationS.intwoariablek whose coefficient matrix

is C, the coding matrix in Exercise 1.

2x + 3y 12

x + 2y = 7

Multipl
12

The equations are

where the first matrix is, the decod-

ing matrix that decodes messages coded by C, and the

matrix consists of the constants in the eVations. The

second
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[

product matrix 3 tells us x = 3, y = 2. Check. In the
2

next chapter we shall explain some of the mathematics

involved in this solution. Using this method solve each

of the following pairs of.equations and check.

(a) 2x + 3y = 5

x + 2y = 4

(d) 2x + 3y . 0

x + 2y = 5

(b) 2x + 3y

x + 2y =

(e) 2x + 3y .

x + 2y =

- 5

- 2

0

0

(c) 2x + 3y = 12

x + 2y = 6

4. In this exercise the coefficient matrix is the decoding

matrix of Exercise 2. What matrix do you think should

be used to solve each of the following equations? Solve

and check.

(a) 2x 3y = 5 (b) 2x - 3y . 7 (c) 2x - 3y ..4

-x + 2y =-2 -x + 2y =-2 -x + 2y =-2

Note that in coding the message GOOD LUCK in Section 1.7

the first 0 became 51 and the, second 0 became 34. (One

letter became two different numbers.) Can you write a

message in which two different letters coded in this fashion,

become the same'number?

The recipient of the secret message in 2(a) did his mul-

tiplication with the 'decoding matrix at the left(instead of

at the right). Did the message get through?

Course II we used coordinate rules in connection with trans-

formations of thsioians onto itself, To help you recall them we list

some of them and one or two others in Figure 1.17. The last column gives
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the coordinate rule in convenient matrix form. We are using a

rectangular coordinate system with origin at O. The matrix

gives both x and y coefficients. When these are missing in the

coordinate rule we give the missing variable the coefficient

x'= x
y'=O. For example, in the first row of Figure 1.17 the rule

may be written
x, = lx + Oy
y, = Ox - ly

1. Rx Reflection in x-axis.

2. Reflection in. y-axis .

xl = x 1

yi = -y o

x' . -x -1

Yt =y 0

0

-1

0

1

Half-turn about O.
xl = -

Y -y 0 -1

and scale factor 3. y, = 3y

Dilation 'with center 0 x' = 3x

Rotation about 0

through 90°.

Reflection in A, the

line with equation y=

Figure 1.17

No,i consider the image of (3,5) under

[03 3.]

1 0

We can use

the matrix of R if we, write (3,5) as the 2x1 matrix

A multiplication yields the tmage as follows:
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1 0 3 3

0 -1 5 -5

[and 3 is interpreted as the point (3,-5). Why this works will
-5

be explained in Chapter 3.

For another example let us find the image of (3,-2) under

r90. The calculation is

or (2,3). Check by

plotting (3,-2) and (2,3) and see if the results are reasonable.

Now suppose we are to find the image of (4,-1) under a

composition of D3 followed by Ho. The computation is:

0 -1 0 3 -1 -I -3 3

The image is (-12,3).

Did you wonder whether we could have multiplied the first

two matrices first, and then this product-with the third matrix?

Again the answer is ( It would seem that multiplication

on matrices is associative. We consider this question further in

Chapter 3 . Meanwhile, it seems that the composition of the dilation

D followed by the half-turn Ho can be effected by a single matrix

that is found by multiplying matrices in the correct order.
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This discussion suggests that 2x2 matrices may determine

[

other transformations. Let us investigate 1 1 , by noting how
0 1

it maps 0(0,0), B(0,1), A(1,0) and D(1,1).

(See

1

10 1 [ 1

Figure 1.18.) In general

[1.

1 a a +

01 b b
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This means that the y-coordinate of a point is unchanged in the

image, while the x-coordinate is increased by the y- coordinate.

This is a new transformation to us, it is an example of a shear.

It maps the square OADB onto the parallelogram OAED.

Using matrices we can compose the shear, with matrix p5; 11.]

[
followed by r90, whose matrix is 0 -1

0
. A multiplication of

1
their matrices, in correct order, gives the matrix of the com-

position.

0

[3.
10 01 11

If we reverse the order of the matrices we get

1 1 0 -1 1 -1

3. 0 1 0

[We end this section with the observation that 3 01 may

be regarded as 3 end also that may be
1 r

p 6 [1 3 1 0 3

-1 0

[1:1 0 0 0
r 1. This shows how the operations

matrices are intertwined.

regarded as

on

1.10 Exercises

In doing these exercises you may wish to refer to Figure 1.17

to recall matrices associated, with various transformations.

Using matrices find the image of (3 2) under each of the

following transformations:

(a) Itx (b) Hy (0) HA, where 1 has equation y =

(d) ryp (e) Ho (f): D
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2. Using matrices find the image of (-2,0) under each of

the compositions listed below. (A has the equation y s x.

(a) Exo Ho

(d) Hoor90

(b) Rio%

(e) DeRA

(c) r900H0

(f) Re

3. Express with a single matrix the matrix of each of the

following composition:

[
(a) The shear with matrix 1 9 followed by Ho.,

0 1j

(b) Ho followed by the shear in (a).

(c) D_2 followed by the shear in (a). (D_2 is the dilation

with center 0 and scale factor -2.)

(d) The shear in (a) followed by E4_2.

(e) D_2 followed by D_2.

Find the images of (0,0), (1,0), (0,1), and (1,1), under

each of,the transformations whose matrix is given below.

Then, if you think you have sufficient information, describe

the transformation.

il (d) 17-1 11

_1_, LO u

(e) (f) (g) (h) r 11 + [1,5

0 1 0 1 0. 0 0

Determine whether or not the mapping with matrix 1 1
1.1

is a transformation. (Hint: Find the images of (3,2)

(a) ri cl (b) "1 (c)
tp 1J Li 1J

and (2,3)

Investigate

,is

[.°1

describe) the transformation whose matrix

Investigate the transformatioi: with matrix 3 0

0 1
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*8. Investigate (describe) the transformation whose matrix

1.

is the coding matrix C = 2 3 , and the transformation
1 2

whose matrix is the decoding matrix D = 2

11..3,

. Then
I

describe the transformations whose matrices are the

products CD and D.C.

We have confined ourselves in this section to plane

transformations whose matrices 'are 2x2. Suggest a kind

of matrix that might be used for space transformations.

1.11 Transition Matrices

As the word "transition" implies, transition matrices

describe how a set of circumstances change from one state to

another. As an example of a transition let us consider people

moving from a city to its suburbs and back and as this

happens population totals change. Suppose , to keep the example

simPle, we disregard numbers of deaths and births and assume

that, in one years. 90% of city people stay in the city and 10%

move to the suburbs, while 20% of suburb :people move bank to

the city and 80% remain there. This data is conveniently
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Further suppose that at the end of 1963 the city had a

population of 5 million and that the suburbs had a population

of 2 million. We.can calculate what the population should be

at the end of 1964 as follows.

From city to city .9x5,000,000 = 4,500,000

From suburb to city .2x2,000,000 400,000

Total to city 4,900,000

From city to suburbs .1x5,000,000 = 500'000

From suburb to suburb .8x2,000,000 = 1,600,000

Total to suburb 2,100,000

As you no doubt recognize this calculation resembles what

happens when we multiply matrices. We try then to set up. a

product of two matrices that calls for this calculation. After

some effort we hit on

City Suburb City Suburb

[5,000,000 2 000,000] .9 .1 [4,900,000 2,10©,000]
.2 .8

1963 population transition 1964 population

matrix

You might try °[ g
.1 5,000,000 to see that this product

.2 8 2,000,000

does not yield the desired result.

Since the procedure for calculating the population at the

end of 1965 (on the basis of the same assumptions) is no differ-

ent we can write

City Suburb

[4,900,000 2,100,000]

1964 population

City Suburb

[4 830 000 2 170,0q
.2 .8

transition 1965 population

matrix

34
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We might also have written this product as follows.

City Suburb City Suburb

[5,000,000 2,000,000] '

.1119

.2 .8] .2 .8
. [4,83ol000 2,170,000]

1963 population transition matrix 1965 population

Assuming multiplication of matrices is associative, we have a

choice of two neighboring matrices in the left member. If we

group the two transition matrices, then we can write

5,000,000 2sonoloq
.2 .8

= P,830,000 2,170,000]

City Suburb 2 City Suburb

1963 population transition 1965 population

matrix

(

9 .1

2

and can be interpreted as a transition matrix for a
.2 .8

2 year period. Do you see how this can be extended for a 3

year period? Or an .year period?

As you see, the changes in population during the second

year were not as, great as Wise of the first year. In fact,

the changes are less and less, and the population tends to become

stable.

For a second example of a transition matrix consider some

water in a closed tank and the water vapor that naturally comes

from it. Assume that 2% of the water evaporates in one hour

while 1% of the vapor condenses to water. Study the transition

matrix in Figure 1.20 to see how this data is displayed in matrix

form. You are asked in exercises to use this matrix to calculate

amounts of water and vapor at the end of hourly periods.
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vapor

1.12 Exercises

- 31 -

To

water vapor

.0 .02

.01 .99

Figure 1.20.

4!7-]
.01 .99

Transition Matrix

1. (a) Using the transition matrix
[-..92 .8

calculate

the 1966 population if the 1965 city population

was 4,830,000 and the suburb population was

2,170,000.

(b) Compare the changes in the city population for

the .years 1963, 1964, 1965, 1966. Also for the

suburb population. Explain how these changes seem

to indicate that the population in each place tends

to become stable.

2. Using the transition matrix for water-vapor
.01 .99

[7:98 .01

states, and' starting with 100 units of water and 0 units

of vapor (when the units are suitably chosen) calculate

the amounts of water and vapor at the end of (a) one hour.

(b) two hours. (c) three hours.

Using your data found ih Exercise 2, discuss the question

of a stability between water and vapor.

36
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4. (a.) 'What is the single transition matrix that

determines population changes over a two year

period, for the situation discussed in Section 1.11?

(b) What is the single transition matrix that describes

the water-vapor changes in a 2 hour period in__

Section 1.11?

5. Without supplying the details, explain how you would go

about finding the transition matrix needed to find the

1962 population from the 1963 population.

1.13 Summary

In this chapter we discussed

1. the prevalence of matrices as they occur in charts and

tables of numbers.

2. how matrices can be used to display clearly a set of

complex data such as pay-offs and bus route networks.

howmatrices can be used to code and decode messages,

end how they can handle some problems of the builder of

homes, and related economic problems.

how, matrices help in the study of plane transformations,

and, in solving a pair of linear equations in two variables.

how matrices can be used to describe transition fr0m one

state to another.

In the course of this discussion three operations on

matrices were introduced, namely, addition,,multiplication by

a scalar, and multiplication of matrices. This raised a number

37
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of mathematical questions concerning the properties of these

operations. Some answers will be suggested in Chapter 3.

1.14 Review Exercises

1. Express as a single matrix AB and BA for each pair of

matrices listed below.

2 6[ 2

(a) A =

!]

, B

[4.-.1 ]

,

(b ) A= [ 4 B

2 1

=

[1.

,

]1 0

[-. 0 1 r s

, B =

[
(c)

1=

(d) A .
1:10 1

1 B=
[b. -11 5

2. For each pair of matrices listed in. Exercise 1 express,

as a single matrix, A+B and B+A.

Express as a single matrix 2A+2B, when A and B are the

matrices in Exercise 1(a).

Express as a single matrix.

1-:§(a) 6 4 3 -3

) +r_3 2.

6 4 L6 ji.

[3 1 as a coding matrix and the

2!

substitution mapping of Figure 1.16 code the following



(b) Using D = 2 -1 as a decoding matrix and the

-5 3

inverse mapping of Figure 1.16, decode the message

that was coded in (a).

6. Using the appropriate matrix C or D of Exercise 5 solve

the following equations and check:

(a) 31 Y = .9 (b) 3x + y = 3

5x + 2y = 16 5x + 2y = 4

(c) 2x - y = -1 (d) 2x - y = 0

-5x + 3y . 1 -5x + 3y = 0

7. Express as a single matrix

00

0 1 abc

1 ghi
100 def

Describe the change on the second matrix resulting from

multiplication.

8. Describe each of the following two-way bus routes between

towns by a matrix.
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9. The population of a city at the end of 1968 is 3,000,000,

and that of its suburbs is also 3,000,000. Assume that

70% of the city people in any year remain in the city

and 30% of them move to the suburb, while 80% of the

suburban population remain in the suburbs and 20% of them

move to the city. Using matrices, calculate the population

in both places at the end of

(a) 1969

(b) 1970

(c) 1971.



Chapter 2

LINEAR EQUATIONS AND MATRICES

2.1 Linear Combinations of Equations

You may recall working with equations of lines, and that

they had Le form ax + by = c, where not both a and b are zero.

To find the coordinates of the point of intersection of two

intersecting lines, we solved a system of two such equations.

This need to solve a system of linear equations occurs fre-

quently in mathematical situations. In this chapter we

examine a method to solve these systems which leads to a

procedure that can be programmed efficiently for

automatic computation.

This method depends on two basic operations which we

illustrate in this section. We work with linear equations of

the form ax. + by = c. At the right are Ao 2x + 3y = 6

three. examples of linear equations that BI! x 4y =

3 1have this form. Co 4x + Ty = 12

The first operation is multiplying the coefficients of x

and :y (the variables) and the constant term by a non-zero number.

If the multiplier for equation Al is 3 the resulting equation

is called 3A1. Study the equations at 3A0 6x + 9y = 18

the right noting the multiplier for each. -2B1: -2x + By = 1

4C0 3x + 2y = 48

It is natural to ask haw the solution set of an equation

is affected when it is multiplied in this manner. To get a



- 37 -

suggestion of the answer let us see if (x,y) = (0,2) satisfies

both Al and 3A1. If x is replaced by 0 and y by 2 in Al then

we get 2(0) + 3(2) = 6. This is a true statement. Therefore

(0,2) satisfies Al. If we make the same replacements in 3A1

we get 6(0) + 9(2) = 18. This too is a true statement. On

the other hand, (1,2) does not satisfy Al for 2(1) + 3(2) = 6

is a false statement. Neither does it satisfy 3A1, for

6(1) + 9(2) = 18 is also a false statement. This illustrates

a little theorem:

If Al represents the linear equation ax + by =

and then A1: ax + by = c and mAl: max + mby = me

have the same solution set.

Can you prove this theorem?

This little theorem is useful in converting a coefficient

in a linear equation to 1 (or any non-zero number), without

disturbing the solution set of the equation. For instance, if

we want the coefficient of y in 2x + 3y = 6 to be 1 we take

1 2
m = 7, yielding 3x + y = 2. Now suppose we have a system A of

linear equations, such as Al and Aa.

2x + 3y = 6 Al

(Observe the name of the system and of its component equations.)

The system has a solution if and only if that solution satisfies

each of its component equations. Suppose that. Al is replaced by

1gAl and A2 remains unchanged. A new system is formed. Let us

call it B.



B

x + ;..y = 3 B1 = (2)A1

x - 4y . - i B2 =A2

Its component equations are B1 = iAl and B2 = A2. How do the

solution sets of systems A and B compare? Clearly all the

solutions that satisfy both equations Al and AO must also

satisfy B1 and B2, since by the little theorem above, no

solutions are either gained or lost when Al is replaced by B1.

Theorem 1. If an equation in a system of linear

equations is replaced by a non-zero

multiple of itself, the new system and

the original system have the same solution

set.

The second operation replaces an equation in a system

by the sum of itself and a constant multiple of another

equattan. For instance, in the illustration below, Al is

replaced by Bi = Al + (-2)A2.

2x + 3y = 6

Ox + lly = 7

x - 4y = -. 1 B2 =A2

The actual work in finding AA + ( -2 )A2 is:

6) + -2 ) ( x 115, =

(2x + 33r = = 6) -2x + 8y =

Ox + lly =
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Definition 1. The two operations, called Elementary

Operations, are:

(1) replacing an equation in a system by

a non-zero constant multiple of itself

(2) replacing an equation in a system by

the sum of itself and a constant multiple

of another.

As one or both of the elementary operations are performed,

a new system of equations is generated. These operations

may be repeated, thus generating a sequence of systems.

Definition 2. Two systems of equations are equivalent

if an only if one can be obtained from the

other by a finite sequence of elementary

operations.

Example 1.
3x + 6y

System A

2x - 3y = -1

System B

System C

x =r 2y = 3

Ox , 7y = -

1. x + ay =

B1 = (4)A1

= As (-2)B1

= Bi

/30132Ox + y

Systems A, B, and C are equivalent.

ExamOle 1 uses the elementary operations. The first operation

x the coefficient 1.was used to obtain equation B



It was also used to get equation C,, giving y the coefficient

1. The second operation was used to obtain equation B, = A, (-2)B1,

giving x the coefficient O. These two strategies are crucial

in solving a system of equations. But before we can use them

we have to satisfy ourselves that equivalent systems have the

same solution set.

Let us examine the three systems above. From C,(Ox + y = 1)

it is clear that y = 1. This is used in C1 to replace y,

yielding x + (2)1 = 3. From this x = 1. It is clear that

(x,y) = (1,1) satisfies C, for C1 and C, are both true when

(x,y) = (1,1). Let us see if (1,1) also satisfies B1 and Bs.

Since B1 = CI there is no need to check B1, and for B,

(0(1) - 7(1) = -7) is true. Now to check A. On replacing

(x,y) by (1,1) Al becomes 3(1) + 6(1) = 9, a true statement, and

A, becomes 2(1) - 3(1) = -1, also a true statement.. This

suggests the next theorem, which is a special case for a

system of two linear equations in two variables. But it is

true for any number of equations in any number of variables.

If System A has linear equations Al and A2,

in two variables, and Syst:em B has linear equa-

tions B1_=_Aand B, = Al + lails with m p 0,

then A and .B (equivalent systems) have the same

solution :set

Can you verify this theorem for a special case?

Examine this verification, and explain how each equation

Theorem 2.
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3x - 2y = -1 Al

A

x + y = 3

B

3x - 2y = B 1 =A1

Ox + 75r Be = A, + (- 1.)A1
5 10

From Be, show that y = 2. Using this and B1, show x = 1.

Now check (x,y) = (1,2) in systems A and B.

While Theorem 2 applies to two systems having two

equations, it is possible to apply it to two systems having

a different number of equations, and two or more variables

as we show in Examples 2 and 3. In studying these examples

you should do all details not shown.

Example 2.
x + 2y = 5

A 2x - y = 5

-x + y = -2

x + 2y = 5

Ox - 5y = -5

Ox + 3y = 3

Al

A,

A3

B, = Al

Be = A, (2)B1

B1 = B1

Find y from Be. Does it agree with what you obtain for y in

Be? Find x from Bl. Now show (x,y) = (3,1) satisfies all

equations in Systems A and B.

Example 3.

3x + 2y - z = 4 Al

x +y+z=1 Al

-4x y = -' A3

46
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Ox - y - 4z = 1 B1 ,. A. + (-3)4

B x+y+z= 1 B9 ea A2

Ox + 3y + 4z = -3 B, = As + (4)A2

Did you supply the details explaining how Bi and B, are ob-

tained? Show that (x,y,z) = (2,-1,0) satisfies both systems

A and B.

Example 4.

Given
3x + y = 2 Al

A

2x - 3y. = -3 A9

(a) Find k such that in kAl the x-coefficient

will be 1.

(b) Find m such that in A, + mAl, the y-coefficient

will be 0.

Solutions.

(a) It = 4, the multiplicative inverse of the

coefficient of x.

(b) = 2, for In Al + 3(A ), =

(2x - 3y = -3) + (9x + 3y = 6) or llx + Oy = 3.

If the coefficient of y in Al is 1, (as it is),

m is the additive inverse of the y-coefficient

in A2.

2.2 Exercises

1. Given equation Al: 5x + y = 3. Form the equation

1defined by (a) 2A1 (b) (c) ' 3A1
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2. Given equation BI: 3x - 2y = -6. Form the equivalent

equation whose

(a) x...oefficient is 1. (b) y-coefficient is 1.

3. Given equations Al: 2x - y = 7 and A,: x 3y = -7.

Form the linear equation defined by:

(a) Al +

(b) 2A1 + A2

(c) Al + (-2)4 (e) Al + 1.A2

(d) ;Al + (-1)/12 (f) 3AI + A2

4. Using the given equations Al and Av of Exercise 3, find m

such that in Al + mAl

(a) the y-coefficient is zero.

(b) Find n such that in Al + nA2 the x-coefficient is O.

Given equations AI: x + 2y + z = -2 and Al: 2x - y + 3z = 4.

(a) Find m so that in A2 + mAl the x-coefficient is zero.

(b) Find n so that in Al + nA, the y-coefficient is zero.

(c) Find k so that in Al + kAl the z-coefficient is zero.

*6. Given A
fax + by = c

/I s,Ialx + bly = cl #

By elementary operations obtain the equivalent system:

lx + Oy = libl74:*cl

B
ac - alc

Ox + !AY =

if abl A alb. Discuss what happens if alb = alb.

2..3 Pivotal Operations.

It has probably occurred to you that we can generate a

sequence of equivalent systems,"in which the last system has

coefficients 1 and 0 only. In that case it would be a simple
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matter to see the solution of a system, if there were one. In

some of the exercises in the preceding section we saw how this

can be done by a judicious choice of elementary operations.

In our next example we illustrate how this can be done in

general.

Example 1. Solve 2x + 3y = 1 Al

A

x + 2y = 0 Aa

Solution. Let us choose system B as follows. B2 = A2

and B1 = Al + (-2)B2.

O x - y = 1 Bl = Al + (-2)132

B

x + 2y = 0

Fol. B1 we obtain

(2x + 3y = 1) + (-2)(x + 2y = 0)

or (2x + 3y = 1) + (-2x - 4y = 0)

or -y = 1 which implies y = -1.

Using this value in B2 we get

r+ 2(-l) = 0 or x = 2.

So the solution is (x, y) = (2,-1).

Does this check in system A? in system B?

Example 2. Solve 2x + 3y = 1 Al

A

x +,2y = 0 A2

Solution. We have already seen how this system can be

transformed by elementary operations to

Ox - y = 1

x + 2y = 0

49
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This introduced a 0 coefficient in B1,

and this was quite helpful. We can also introduce

a 0 coefficient in B2 by transforming system B

to system C as follows:

Ox + y = -1 C1 = ( -1) B1

C

x + Oy = 2 C2 = B, + (-2)C1

Check this carefully.

From C it is a simple matter to see that the solu-

tion of A is (x,y) = (2,-1).

Can you see how the following table shortens

and highlights all the operations we have

gone through?

B

C

2x + 3y = 1

x + 2y = 0

Ox - y = 1

x + 2y = 0

Al

A2

B1 = Al + (-2)139 (Note that
B2 was ob-
tained be-
fore Bt.)= As

Ox + y = -1 C1 = (-1)B1

x + Oy = 2 = B, + (-2)C1

solution (x,y) = (2, -1)

Before we make precise the details of the method of Example 2,

let us examine another example. We shall use the table

form we discussed in Example 2. If you have trouble with it

50
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lay it out in detail as we did in the previous example.

circle around a coefficient in the table is explained

later.

ale 3. Solve: 2x + 3y = 1

3x - 2y = 8

Solution: This can also be written

2X + 3y - 1 = 0

3x - 2y - 8 = 0

B

C

+ 3y - 3. =0

3x - 2y - 8 0

Al

A2

3 1
x + ffy - 7 0 Bi

13
Ox - = 0 B2 = A2 (3)B1

X Oy - 2 = 0 Ci = B1 + (- 0C2

Ox + y + 1 = 0

(x,y) = (2,-1)

Check A,: 2(2) + 3(-1) - 1 = 0

A3: 3(2) 2( -1) 8 = 0

Ca

is true.

is true.

Note that in this case C, was obtained prior to C1 and

in fact was used to obtain Cl.

In the first operation we chose to convert the coefficient

2 in 2x of Al to 1 in B1. This choice is indicated by the

circle around the 2. Another such choice, also marked by a
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13
circle, was made in 13, to convert - 7 to 1 in C,. This

choice, to convert a coefficient to 1, is the first step

13in an operation called pivoting. The numbers 2 and -

are called the pivots. Having chosen a pivot, say an x-

coefficient, we then try to convert the x-coefficients of the

other equations to zero. The two steps in pivoting are the

elementary operations. In this way, if possible, we end with

a system in which one x-coefficient is 1, and all others

are zero. By pivoting on a y-coefficient we can also try to

convert one y-coefficient to 1 and all others to zero. This

can be done, as Example 3 showsowitheut disturbing the effects

of pivoting on x-coefficients. In this manner we arrive,

if possible, at an equivalent system whose solution set

is obvious.

To summarlze, the pivotal operations on a non-zero pivot

consist of elementary operations which replace a given system

by an equivalent system in which each pivot is converted to

1 and all other coefficients of the variable of the pivot are

converted-to-zeros. When pivotal operations exe_performed as

far as they can go, the last system is called the Gauss-Jordan

reduced form, or simply the Gauss-Jordan form. If there is

a solution the Gauss-Jordan form shows what it is.

The name Gauss-Jordan form is after Gauss who invented

the pivoting operations, and Jordan who used it get, only

1 and 0 coefficients as far as possible. Becauaia this method

is used extensively, te write only what is essential, namely
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coefficients and constants. This leads to a sequence of

matrices which, together with the instructions, we call a

tableau. Example 3 is rewritten in both equation and tableau

form so that you may see what is stripped off and what remains.

The middle column explains what happens in both forms.

We continue to draw lines between successive systems but

we do not name them any more.

Equation Form

Qac + 3y -1 =0

3x -2y - 8 . 0

3 1x + 7y - = 0

Ox + y - 13 -

x 405r - 2 = 0

Ox + y + 1 = 0

Instructions

Al

A2

B1 = (;)A1

B2 = A, + (-3)B1

C1 Bt + (- PC
Cl (- ?- )C1

Tableau Form

x
1.1D 3 1 = 0

3 -2 8 = 0
3 1

1 = 0

(1) 130 = 0

1 0 2 = 0

0 1 -1 = 0

Comment 1. Note the headings x, y, and -1 in the tab-

leau. They are there to help us retrieve

an equation from the tableau. To retrieve

CI, for example, multiply each number in row

C1 by its heading and set the sum of the products

equal to zero. System C is, by this method

of retrieval, Ox +y+1=0andx+ Oy - 2 = O.

Comment 2. The -1 heading may startle you. It actually

saves you the effort of solving y + 1 = 0 and
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x - 2 = O. Simply read the solutions in

the -1 column. Can you explain how the -1

heading does this?

Comment 3. Note, in passing, that the first two columns

in system A of the tableau comprise the

coefficient matrix of the original system

of equations.

The pivotal method is not restricted to solving a system

of two equations in two variables. It can also be used

to solve a system containing any number of linear equations in

any number of variables, if there is a solution. Our next

example shows how this is done, in tableau form, for three

equations in three unknowns. You may expect three pivoting

operations. The row operations are explained in the last

column.

Example 4. Solve

2x + 3y + z =

x +'y - z =1

x.- 2y + 2z = 7

Solution. Writing the equations in the form ax + by + cz + d

= 0 we get in tableau form:
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A

B

C

D

2 -1

1

-3

1

-2

1

-1

2

1

7

0 -5 3 2

1 1 -1 1

0 e) 3 6

0 0 ® -8

1 0 0 3

0 3. -1 -2

0 0 . 1 4

1 0 0 3

0 1 0 2
4

Now system D

Ox + Oy + z - = 0

x + Oy + Oz - 3 = 0

Ox + y + Oz -2 =0

It is evident from the -1 column of system D that

(x,y,z) = (3,2,4)

Check that-this-solution-satisfies system A..

Can you write out in full detail how we obtain system B from

system A?

Can you write it out in equation form?

Can you explain how system C is obtained from system B? Can

you write it out in equation form?

Do the same in going from system C to system D.

can
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= 0 Al

= 0 A2

= 0 A3

= 0 Bl = Al (2)B2

=0 B2 =A,

= 0 B3 = A3 ( -1 )B2

= 0 CI = B1 + 5C3

= 0 Co =.1 B2 ( -1) C3

= 0 C3 = (- i)B3

=0 D1 = ( 1)C
2 1

=0 DI = C2 4* 0D1

=0 Dm =C3 +D1

be rewritten as:
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2.4 Exercises

Solve the systems of equations in Exercises 1-14 by the

pivotal method, using only the tableau form. Check all

your solutions.

1. x + 3y = 10 8. x + 4z . 4

2x + 5y = 16 2x + y + z = 3

2. 2x + 3y = 10 -x + y + z 1

y + 2x = 6 9. x+y-z- 6 = 0

3. 5x - 3y - 12 = 0 2y + z - 20 = 0

2x - y - 5 = 0 5x - y.- 2z + 3 = 0

4. 5u + 3v - 27 = 0 10. x - 3y + 2z + 1 = 0

6u - 2v - 10 = 0 2y - 3z - 3 = 0

5. 2i + 4s is 3x + + 2 = 0

4r - 3s = 1 11. xi + 4X2 2X9 19 = 0

3x = 13 - 4y 2x1 + X9 4. 2Xe 19 = 0

2x1 + 3xs + xs - 18 = 0

12. 3x - 4z = 0

6x + 4y = -1

8y + 2z = 5.

13. x - y + z = 3

3x + 2y - z = 1

4x - 2y - 3z = -2

14 . x+y+ z+w= 5

2x + y - z + w = 4

x + y - w = 5

y = 5x + 4

7. x + y - z - -2

x - 2y- 2z 1

2x + 3y + z = 1

r11
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2.5 Solving Systems of Linear Equations: Continued

In this section we consider two basic questions.

1. Do all linear equations having as many equations as

variables have solutions?

2. Can we solve a system of m linear equations in

n variables if in A n?

The pivotal method helps to answer both questions.

Consider, by way of answering the first question, the

system in Example 1.

Example 1. Solve: 3x + 2y = 8

Gx + 4y = 9

Solution.

A
= 0 Al

= 0 A2

= 0 Bs = 3A1

= o B1 = Al + (-6) B1

The last row represents the equation Ox + Oy = -7.

Clearly, there are no values of (x,y) that satisfy this

equation. Inasmuch as Ox + Oy = 0 A 7 for all values

of (x,y). Since there are no solutions for this equation

(BO, thOre can be none for the system A.

Let us try solving another pair of linear equations, one that

closely. resembles the first pair.

Example 2. Solve 3x + 2y = 8

6x + 4y = 16

J
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Solution. x y -1

=

=

=

0

0

0

0

Al

A,

1
B1 7A.1

B, = Al + (-6)B1
B

2

4

8

16

1

0

27

0

7

0

This time the last row represents the equation

Cx + Oy = 0 which is satisfied by all values of (x,y).

Hence whatever satisfies B1 also satisfies B2 and the

original system consisting of A1,A,. Equation B1,

2 8 2
which is x /y - 3, = 0 is equivalent to x = gy +

Any value assigned to y yields a value for x. For in-

stance,

if y = 3,

if y = -50,

if y = 0,

x = -2 +

x = 100--4-

x=

87

=

36,

8
Thus (-,i0) (36,-50), (7, 0) are among an infinite number of

values of (x,y) that satisfy the original equations.

Check this for (3-0) and (3-00). The entire solution set

may be designated

((x,y): x = - + s y = s, s E R)

or more compactly

((- ;a + ;vs): s E R).

Summarizing the results of Examples 1 and 2 we see that

there are no solutions if a row in the Gauss-Jordan form

contains only zeros except for the last number. If a row

contains only zeros, we may delete it and work with the remaining

row or rows in the tableau.
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0
2

3

0 0 0. 0= 0

2 -3 4

-3 5 5

-1 2 1010

3.

0

0

0 2 -3 4

2 -3 5 5

3 -1 2 10

23.

0

0

59

-3

11

11

-3

4

-2

-3

- 54 -

-2

There is no solution to the system of Example 3. In

Example 4 delete the last row. The remaining rows

11 3 1 22
represent y - 7. z - 7.. 0 and x + 7e -7-= 0

22 3or x = -
1

+ Y = -7114 + 7
Any value of z produces one value for x and one for y.

15 8o
For instance, if z = 7, x = T , y = -7-

- 54 -

59

There is no solution to the system of Example 3. In

Example 4 delete the last row. The remaining rows

11 3 1 22
represent y - 7. z - 7.. 0 and x + 7e -7-= 0

22 3or x = -
1

+ Y = -7114 + 7
Any value of z produces one value for x and one for y.

15 8o
For instance, if z = 7, x = T , y = -7-

There is no solution to the system of Example 3. In

Example 4 delete the last row. The remaining rows

11 3 1 22
represent y - 7. z - 7.. 0 and x + 7e -7-= 0

22 3or x = -
1

+ Y = -7114 + 7
Any value of z produces one value for x and one for y.

15 8o
For instance, if z = 7, x = T , y = -7-
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3if z = 0, x = 22
y = 7

if z = 1, x = 3, y = 2.

The solution set may be designated

((x,y,z): x = - 4 + y + 7, z = s, s E R),

1 + 4, s); s E R).or briefly as ((- +7s

This answers the first of the two questions, and also

part of the second, since we solved two linear equations

in three variables in Example 4. Now to see how pivotal

operations hmdle three linear eqw.tions in two

variables. Again 'e use two examples having the

some coefficient matrix.

Example 5.

Solve: x + 2y =

2x - y = 5

3x + 4y = 13

Solution

x y -1

Gl 2

2 -1 5

3 4 13

1 2 5

O (:) -5

O -2 -2

1

0

0

0 3

1 1

0 0

= 0 Al

= 0 A3

= 0 A3

= 0 B1 =A1

= 0 B2 = A, +( -2 )B1

= 0 B3 = A3 +( -3 )B1

= 0 01 = B1 +( -2 )C3

=0 0. (-

= 0 C3 = B3 +2C,

(x,y) = (3,1)

Exam p?. e 6.

Solve: x + 2y = 5

2x - y = 5

3x + 4y = 11

Solution

x y -1

0 2 5 =0
2 -1 5 = 0

3 4 11 = 0

=01 2 5

-5

O -2 -4

1 0 3

O 1 1

O 0 -2

no solutions

=0

=0

= 0

=0

o



-56-

The solution (x,y) = (3,1) checks in all of the three

original equations of Example 5.

Our last example illustrates how to handle one linear

equation in three variables.

Example 6. Solve: x + 2y - 3z = 5

Solution For all (x,y,z), x = -2y + 3z + 5. If we

assign a value to y and one to z, not necessarily the same

as the one we assign to y, we find a value that corresponds

to (y,z). For instance,

if y = 3, z = 1, then x = -6 + 3 + 5 = 2,

if y = 0, z = 20, then x = 0 + 60 + 5 = 65.

Thus (2,3,1) and (65,0,20) are in the solution set.

The entire set can be designated by

((x,y,z): x = -2s + 3t + 5, y = s,z = to and s,t E R),

or (( -2s + 3t + 5, s, t): s,t E R).

2.6 Exercises

Solve and check. If the solution set contains an infinite

number of solutions represent it in set notation.

1. 2x + 5Y = 3

4x + lOy = 7

2. 3x - 2y = 3

6x - = 6

3. x + 2y + z = 1

2x + y = 3

3x + 4y + 2z =4

4. x + y - 2z = 1

2x - y + z = 1

x + 2z + 2y = 2

2x1 + x + 2x1 =

2x + 2xa + 2t, = 7
-x3 3

61



6. 2x1 + x, + 3x3 = -3

3x1 + 4x2 = 24

7. xi + x, = 5

2x1 -3x2 = 15

5x1 + 2,4 = 28

8. x + y = 5

2x - 3y = 15

3x - 2y = 10

9. 3r + s - 4t = 6

10. 2u - 7v = 4

- 57 -

11. 5a+ 2b = 14 - c

2a - 3c = 14 + b

12. x + 3z = 5

x + 5z = 3

x+ 9z = -1

13. x + 2y + 3z = 5

x + 3y + 5z =3

x+ 5y + 9z = -1

14. x + 2y + 3z = 5

x + 3y + 5z = 3

2.7 Homogeneous Linear Equations

Homogeneous linear equations have constant terms which

are zero. They present no special problem that cannot be

solved by the pivotal method. We make special mention of

them because they occur quite frequently and occupy an impor-

tant place in mathematical theory.

The special thing to notice is that the -1 column of the

related tableaus contains nothing but zeros. This follows from

th fact that results of elementary operations on zeros are

zero. Hence we can omit the -1 column when solving homogeneous

equations and work only with the coefficient matrix.

net us agree, from now on, to omit the "=0" that follows

each row. Let it be understood hereafter, also, for systems

that are not homogeneous.

62



Example 1.

Solve: x + 2y + z = 0

2x - y - 3z = 0

3x + 11-y + z = 0

X y z

y + z = 0 Or y

x - z = 0 Or X

let z =

(x,y,z) == (S,-S,S)

-58-

Al

A2

Am

Bt = Al

B2 = A3 +(-2)Bi

P2 = A24( 3)B1

Cl = B1+(-2) C2

C2 = (- ;)B.;?

C3 = B3 +2C2

= z

=z

Example 2.

Solve: x + 2y + z = 0

2x - y - 3z . 0

3x + Liy + 2z = 0

x y z

1 2 1e -5

0 -2 -1

0 -1

0 1 1

0 0

1 0 0 D-t CD17: -1+-3

0 1 0 Da = C2+( -1)DA

0 0 1 D3 = Co

(x,y,z) = (0,0,0)

Perhaps you anticipated that all homogeneous systems

having 3 equations in 3 unknowns necessarily had the solution

(0,0,0) only. Indeed this happened in. Example 2. But in

Example 1 there are an infinite number of solutIoas, including

not only (0,0,0), but also (2,-2,2), (I5, -4A, 4!5) and so on.

Had you known that one of the equations in Example 1 is the

sum of multiples of the other two, you might have guessed
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11 2
otherwise. Indeed, A3 = TA1 54. (Verify this). Thus

the system in Example 1 is equivalent to the system containing

only Al and A,. On the other hand, try as you will, you will

not be able to express an equation in Example 2 as the sum of

multiples of the other two. This is an essential difference

between the two systems.

2.8 Exercises

In Exercises 1-4, solve by the pivotal method, and check.

1. 2x + 3y = 0 3. 2x + 3y = 0

3
x + 2y = 0 + 5y - 0

2. 2x + 3y = 0 4. 2x + 3y = 0

3x + 2y = 0 3x - 2y = 0

5. Prove: If = a, where asb,c,d are non-zero, then

the system ax + by = 0 has an infinite solution set.

cx + dy = 0

Express its solution set in set notation.

In Exercises 6-11 solve by the pivotal method

6. x - 3y + 2z = 0

x 2y - z = 0

2x - y + 3z =0

7. xl + xs = 0

2x1 + 3x2 - x3 = .0

421 + 5x0 + x3 = 0

8. 2x + 7y + 4z = 0

x +y+z= 0

3x - 2y + z =0

64

9. 2a + 3b 5c = 0

a - 2b + c =0

4a + 13b 17c = 0

10. x1 +x3 +x3 =0

2x1 + x2 - x, = 0

Xi - x2 + x3 = 0

11. XI "I" xs + x4 = 0

+ 422 + 3x3 + 224 = 0

x1 - x2 - x4 = 0

4x1 + x2 + 2x3 + 3x4 = 0
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12. Let a system of three equations in three variables be

such that one of the equations can be obtained from the

other two via elementary operations.

Prove that the system has an infinite solution set.

2.9 Matrix Multiplication Derived from Linear Equations in

Matrix Notation

We return to the

previously examined.

matrices, as follows:

+ 3y = 1
system , that we have

x + 2y = 0
We write this system in terms of

y 0

In doing this we have detached the coefficients from their

variables, leaving a 2 x 2 coefficient matrix , and instead of

writing x y at the top of a tableau we wrote [3;1 as a 2 x 1

matrix to rvatIplied by the coefficient matrix. Note

that, if we perform the multiplication sas we did in Chapter 1,

then

+

[1 :1 [:1 x+ 2y , a 2 x 1 matrix.

[I

Then when we set 2x + 3y 1 we have corresponding

x + 2y 0

components equal (as required by the definition of matrix equality),

and we have retrieved the two original equations..

It often happens that people who use systems of linear

equations to solve problems in science, industry, and other

activities, have to solve many systems that have the same

65
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coefficient matrix. To illustrate with our simple coding

matrix, suppose one has to solve

2x1 + 3x2 =1 2y1 + 33r =0 221 +3z2 =4
and and

xi .:e. 2x2 = 0 yi + 2y, = 1 zi + 2z2 = 3

We can write them as follows:

[--I

2 3 xi 1

0

Now the astonishing thing is that all three of these matrix

equations can be combined into one, as follows:

1[1 ;II [I. 11 2 x2 y2 z2 0 1 3

provided we accept the definition of multiplication of

matrices as suggested in Chapter 1. Perhaps you recall that

we multiplied row terms by corresponding column terms and

added, to get the terms in the product. For the last multiplica-

tion this would be:

2x1 + 3x3 2y1 + 3y2 2z1 + 3z2

[

[1 0 Li
=

xl + 2x1 yi + 2y2 z2 + 2z2 0 1 3

Do you see, when corresponding terms in the two matrices are

equated, we retrieve the six equations we started with?

2

1

3

2

yl

y2
_

0

1] f ! [I M 1

2.10 Exerci3es

1. Write a matrix equation for each of the following systems:

3x + 5y = 8
(a)

x + 2y =.3
(b)

3x - 5y = 2
(c)

ax + by = c

x - 3y = 4 dx + ey = f

fi r
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2. Write one matrix equation for all of the following

systems whose coefficient matrices are the same:

3x + 5y = 8

x + 2y = 3

2.11 Matrix Inversion

3x + 5y = 3, 3x + 5y = 1

x + 2y = 1 x + 2y = 0

In this section we show how to determine whether or not a

(square) matrix has an inverse, and if it does, how to find

it. We illustrate the method with
2 3

[1 2

rz r.

Let be the inverse. Then
w 1

This is equivalent to

I

x 1

] [..
0

and

In tableau form these can be written:

y

2
and

1,1

x z -1

2 3 1 = 0

1 2 0 = 0

r.2 z w 0 1

12 w

w -1

3 0= 0

2 1 = 0

Since the coefficient matrices are the same in both tableaus,

we shall be performing the same pivotal operations. Hence

we can combine them into one tableau with two -1 columns, if

we are careful to read the first -1 column for variables

x and z, and the second for y and w.
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1 A4 1

A

B

C

2

1

3

2

1

0

0

1

1

0

3
§-

1

1
.§.

1- ...,?

0

1

1

0

0

1

2

-1

-3

2
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As

A2

112. =

= + (-11B1

Cl = Bl + (- ;4;

Ca = 2B2

We see from C that there are indeed unique

ri 5.1for x,y,z and w. Hence
2

has a (uniquo)

the identity matrix emerges at the left of C we

of
E
Note that we started with a tableau

A L121
where A is the matrix whose inverse we seek, and ended with

in the right half of C.

solutions

inverse. When

read the inverse

1a

We can therefore describe this method as the application of

pivotal operations on A that ultimately produce 12. If this

can be done then these operat...ons will transform 12 into A.

We illustrate the procedure by trying to find the inverse, if

A =
2

0 1 0

any, of

0 3 1
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1 2 0 1

0 0 0 0 1 0

0 3 1 0 0 1

1 0 0 1 -2 0

0 1 0 0 1 0,

,0 0 1 0 -3 11

69
Al

A,

A3

Bl = Al + (-2)13.6

Be = As

B3 = A3 (4)B0

Note that the first and third columns have one 1 and two

zeros. Hence we need only pivot on the second column. We

see that -2

At = 0 1 0

0 -3 1 .

Verify this by showing that A A'1 = A4 = Is .

In the next example we try to find the inverse of a matrix

that has no inverse. Can you anticipate how this will show

itself? Let

I.

ri 2 3

M = 2 -1 -2

3 1 1 .

Before starting note that the third row is the sum of the

first two. Does this arouse any suspicions?

IQ)

2

3

2

-1

1

3

-2

1

1 0

0 1

0 0

0

0

1

1

0

0

2

(!)

-5

3

-8

-8

1 0

-2 1

-3 0

--E-25 5
25 1- 5
-1 -1

0

0

1

.

1

1

0

0

.
J.

0

15

.

0

Al

A3

B1 = Al

B3 = As (-2)B1

B3 = A3 (4)B1

Ci = B1 (2)Cs

C2 ( 4)132

pi, Bs 5;
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It is hopeless. The three zeros in the last row proclaim that

we shall never obtain In via pivotal operations. Can you

explain why it is futile to continue? (Can you pivot on such

a row?) If we try to retrieve the equations implicit in

the last row they would be:

Ox1 + Ox2 + Oxn = -1

Ox4 + 01% + Ox8 = -1

Ox7 + Oxe + Ox9 = 1

Why? (P.:3e the beginning of this section.)

Clearly there are no solutions for (xl,x2,xn,x4,x5,xn,x7,x8,x9).

Hence M has no inverse.

2.12 Exercises

In Exercises 1-12, find the inverse, if it exists, of

the matrices listed.

1. 8 12

[ 3I 5

[

2. 8 8 2

7 2

1-2

3, 8 -4

4. 3.

1 0

1 0

[I III

1 0 2

0 2 1

2 1 0

6.

7.

8.

2

1

1

0[

1

2

0

2

1

3

1

2

0

0

b

0

-1

0

-2

-4

-3

1

-4

-5

3

(abc 4
VI
,0

0

0

c

2-

-1

2

19



10. 1 2 -1

1 -1 0

1 9 -4
[I -I

11. 1 -1 -1

1 1 1

112 2 2

12. 1 0 1

0

I-_

1 0

1 0 1

1 1 0

9
1

1

1

13. (a) Solve for matrix X:

5

6

2 X -.=.- I,
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1

2

2

1

2

(b) Verify that

1 1 2

2 2 5

2

X .

2.13 Word Problems

Problems in the real world do not come to us in the form

of equations or inequalities. To solve these problems we first

have to formulate them in words, and then translate these words

into the language of mathematics. This gives a problem the
.

form of an equation or inequality. If we are able to. solve
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these we are led to a solution of the original problem. In

this seciAon we illustrate how this works. "Real" problems are

usually too complex to illustrate simply, so we avail ourselves

of "puzzle" problems that resemble "real" problems in some

ways.

Problem 1. Mr. Ross said to his son Plter "For every

exam you pass this term I will give you 50

cents. But for every exam you fail you must

forfeit 20 cents." At the end of the term,

Mr. Ross erroneously interchanged the number

of exams passed and failed and paid Peter

40 cents. Peter objected, claiming $3.20.

How many exams did Peter pass and how many did

he fail? Assume that Mr. Ross and Peter made

no arithmetic mistakes.

Solution. Part I.

Our first goal is to express the conditions

in this problem in the form of equations. We

cannot do this without using a symbol that

represents the number of exams passed and one

for the number failed. So we start with:

Let p represent the number of exams passed.

(We choose 'p to remind us that it represents

the number of exams passed.) Let f represent

the number of exams failed. To determine

how much he was to receive Peter multiplied

50 and p, then 20 and f, and finally subtracted.
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This can be represented by 50p - 20f,

Peter claimed $3.20. This should be written

320 because the 50 and 20 are in cents. Thus

50p - 20f = 320.

On the other hand, Mr. Ross interchanged p and

f. For him then

50f - 20p = 4o.

Rearranging for matrix solution:

-20f + 50p = 320

50f -20p =4o

It is convenient to divide each member by 10.

This reduces the coefficients and constants

without changing the soluiior set.

-2f + 5p = 32

5f - 2p = 4

This completes the first part of the solution.

We have succeeded in describing the conditions

of the problem as equations.

Part II

Now to solve these equations. We use the pivotal

operatl.on method.

= (- 2)A1

= As 5 )B1

f p -1

-2 5 32 Al

5 2 4 As

1 - -16 B1

21
8 B2

o 4

0 1 8

(f,p) = (4,8)

= gz +' -052
2= B,
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Therefore Peter failed 4 exams and passed 8.

These satisfy the conditions of the problem.

Problem 2. Next semester the terms of the agreement were

revised. For each grade of 90 or better,

reported as E (excellent), Peter was to receive

50 cents. For each grade between 70 and 90

reported as P (passing), including 70, he was

to receive 10 cents. For each failing grade

reported as F, he was to forfeit 30 cents.

At the end of the term Peter (the best mathema-

tician in the family) claimed $2.20. His father,

as usual, reversed the number of E, P, and F

reports and claimed a forfeit of 20 cents. They

both appealed to Mrs. Ross, who erroneously

interchanged the number of E and P reports and

said Peter should receive$1.40. How many of

each type of report did Peter earn? Assume no

arithmetic mistakes were made.

Solution. Part I

Let E represent the number of excellent. reports,

let P represent the number of passing reports,

and let F represent the number of failing re-

ports. By Peter's calculation

50E + 10P - 30F = 220
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By Mr. Ross' calculation

50F + 10P - 30E = -20.

By Mrs. Ross' calculation

50P + 10E - 30F = 140.

Arranging these for solutions, after

dividing by 10,

5E + P - 3F = 22

-3E + P + 5F = -2

E + 5P - 3F = 14.

Part II

This system can now be solved by the pivotal

method. The solution is

(Es PsF) = (5,3,2)

Does this agree with the conditions of the

original problem?

In doing the exercises that follow try to see your

solution as consisting of two parts, as above. You may find it

necessary to read some problems several times before you under-

stand the conditions well enough to write equations that des-

cribe them. This will be the more difficult part. Do not

get discouraged. Good luck.

2.'14 Exercises

-1. A classroom has 36 desks some single, others double



-71-

(seating two). The seatino; capacity is 42. Haw many

desks of each kind are there?

2. I-bought 15 postage stamps paying 72 cents, some 4 cent

stamps, the others 6 cent stamps. How many of each did

I buy?

3. For $1.06 I bought some 4 cent stamps, some 5 cent stamps

and some 6 cent stamps, 21 stamps altogether. Had the

price of 5 and 6 cent stamps been increased 1 cent I would

have paid $1.20. How many of each stamp did I buy?

4. A grocer wants to mix two brands of coffee, one selling

at 70 cents per pound, the other at 80 cents per pound.

He wants 20 pounds of mixture to sell at 76 cents per

pound, and he wants the net revenue from sales to be

the same whether the coffee is sold mixed or unmixed.

How many pounds of each brand should be mixed?

5. A collection of dimes and quarters amounts to $2.95. If

the dimes were quarters and the quarters dimes, the amount

collected would be 30 cents less. How many of each coin

are there in the collection?

6. Acollectimof nickels, dimes, and quarters, 13 coins in

all, amounts to $2.40. If the dimes were nickels, the

quarters dimes, and the nickels quarters, the collection

would amount to $1.45. How many of each kind are there?

A club has 28 members. Its junior members pay monthly

dues of 25 cents, and all others pay monthly dues of 35

cents. During one month when all paid dues, the collection
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was $8.70. How many junior members are there?

*8. A manufacturer makes two kinds of toys, A and B, using

three machines M1, M,, M6 in the manufacturing process

of each toy. The table displays the number of minutes

needed on each machine for one toy of each kind. In

making a batch of toys Mi was used 4 hours 20 minutes;

MI Mm Mm

1

A 4 8 6

B 6 5 3

M, was used 5 hours 10 minutes, and Mm was used 3

hours 30 minutes. How many toys of each kind were

there in the batch?

9. Relative to a coordinate system, an equation of a line

is ax + by = 7. The line contains points with coordinates

(-2,3) and (4,5). Find a and b.

10. Relative to a space coordinate system, a plane has equation

ax + by + cz = 12. Find a, b, c if the plane contains

points with coordinates (1,2,73), (1,-3,2), (3,1,-2).

11. A contractor employed 12 men; some he paid $15 per day,

some $18 per day, and the rest $20 per day, expecting to

pay a total of $219 per day. His, bookkeeper erroneously

interchanged the number of men earning the least with the

number earning the most and prepared a payroll of $204.

How many were hired at each rate?
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12. There were twice as many men on a bus as women. At the

next stop four men got off and five women got on. Then

there were as many women as men. How many men and women

were there at first?

13. There were a total of 46 passengers on a bus, consisting

of men, women, and children. At the next stop two men

got off. Then there were as many adults as children. At

the next stop 12 children got off. Then the number of child-

ren was equal to the difference between the numbers of

women and men. How many men, women, and children were

there at first?

14. Said a young boy: "I am thinking of two numbers. Whether

I take four times the first minus the second, plus 2; or

twice the first plus the second, plus 4; or three times

the first minus the second, plus 1, I always get zero."

What numbers did the young boy have in mind?

15. The sum of the ages of man, wife, and son is 64 years.

In 6 years the father will be three times as old as the

son. Four years ago the mother was 12 times as old as

the son. How old is each now?

16. A contractor plans to spend $295,000 to build three

types of houses, 16 in all. It costs $15,000 to build one

house of the first type, $20, 000 to build one house of

the second type, and $25,000 to build one house of the

third type. how m,,ny of each type should he build if
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there are to be as many of the first type as the

other two together?

17. A restaurant owner plans to use x tables each seating 4,

y tables each seating 6, and z tables each seating 8;

altogether 20 tables. If fully occupied,the tables

will seat 108 customers. If only of the.x tables, of the

1y tables and 4. of the z tables are used, each fully

occupied, then 46 customers will be seated. Find (x,y,z).

2.15 Summary

This chapter presented the pivotal method for solving a

system of m linear equations in n variables, m < 3 and n .3.

(The method can be used for any m and any n.) This involved

(a) The notion of pivotal operations on equations, and

equivalent systems of linear equations.

(b) Two elementary operations on equations in a system

of equations; the first replaces an equation with

one in which a coefficient is 1; the other

replaces an equation with one in which a coefficient

is 0.

(c) These pivotal operations are repeated as far as

possible. The last system then has the Gauss-Jordan

reduced form, in which each column has zeros and

possibly one 1.

79
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(d) The convenience of a tableau arrangement that records

the operation results and equivalent systems.

The pivotal operation method enables us to

(a) solve systems that have one, none, or an infinite

number of solutions,

(b) solve a set of systems of linear equations that have

the same coefficient matrix,

(c) find the inverse of a square matrix, if it has one.

The chapter ended with word problems, that were solved

with the aid of systems of linear equations.

2.16 Review Exercises

Using the pivotal method in tableau form solve the

systems in Exercises 1-6. Express infinite sets, if any: in

set notation.
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Find the inverses of each of the matrices in Exercises 7-10,

if any.

I7 5

10. 1 -1 2

2 -1 0

li! I]1 2

0 1 3

11. fl 1 1 0I

III

1 -2 3
1 1 0 1

2 1 0 1011
-1 7 9

0 1 1 1

12. Solve the systems listed below one step, after writingin

a matrix equation. (Hint: use the result of Exercise 7.)

3x + 2y = 4 3x + 2y = 7 3x + 2y = 0

7x + 5y = 11 7x + 5y = 17 7x + 5y = 0

13. Without solving, show that

3x + y - z = 0

2y + z = 0

y 0

has an infinite number of solutions.

1 . The value of ax'-+ bx + c is 0 when x = 1; 5 when x =

and 13 when x = 3. Find a4b,c).

A dealer puts up pens and pencils in two kinds of packages,

4 pencils and 3 penspin one, 3 pencils and 5 pens in the

other. How many of each 'package should one buy to obtain

a total of 38 pencils and 45 pens?
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16. To be admitted to a concert, elementary school students

pay 25 cents each, high school students pay 50 cents each,

and college students pay one dollar each. One hundred

students paid 63 dollars and 75 cents. Had the price

of admission for high school students been reduced 15

cents and that for college students 25 cents, the receipts

would have been 48 dollars and 50 cents. How many students

at each level attended the concert?



Chapter 3

THE ALGEBRA OF MATRICES

3.1 The World of Matrices

In Chapters 1 and 2 of this course, we have come across a

new kind of entity- -the matrix (plural, matrices). We have seen

them arising in a variety of circumstances and have observed

how matrices can be used to organize and express complex sets

of facts easily, simply, and clearly. Furthermore, we have

gon e through various processes and activities in analyzing

and solving the problems that we expressed by means of these

matrices. These activities may have reminded us of activities

that we used in many areas in mathematics such as addition and

multiplication of numbers.

In this chapter we will organize what we have learned about

matrices in a mathematical way and will explore to see what

structures we are led to. In this study we will proceed by

means of definitions theorems, and proofs.

Definition 1, Let m and n be natural numbers. A rectangular

array, (arrangement) of inn elements chosen from

set S, and arranged in m rows and n columns

is anmxn S matrix, or an -m x n matrix over

the set S, or simply, if the set S is clearly

understood, an m x n matrix, The elements of



Definition 2, m and n are called the dimensions of the matrix.

If m = n, the matrix is called a square matrix

and m is its order.

Notation. We use capital letters A,B,C,, to name matrices

and lower case letters asbscs to name scalars.

The scalar in the ith row lth column of A is

denoted aJP where capital A and lower case a

correspond. Thus the scalar in the ith row Ath

column of matrix B is b
'
and so on.

For example, the 2 X 3 matrix B should be:

B
bat Ns bas

bat bss bss

and the m x n matrix A would be:

asa

Definition 3, Two matrices A and'B are equal, written A = Bs

if and only if they have the same dimensions,

and for all i and

Theorem 1. Equality of matrices is an equivalence relation.

To prove his .we mu`st> prove 'three things: ''
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(b) If A = B, then B = A (the symmetric;

property),

(c) If A= B and B= C, then A= C (the

transitive property).

The proof of each part depends on the corre-

sponding properties of equality for scalars.

You are asked to supply the proofs in an

exercise.

We have not yet specified the nature of S, the set of

scalars. Let us agree, from now on, unless otherwise specified,

that S is the field of real numbers, R. Jrisome exercises

the field may be (41 +,1 or other finite fields.

(a) , What are the dimensions of. A?

(h) What is .at3 a38? age? a43

(c) For what.val4a8 of -141 aid Dir
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3. Solve the following equations:

a)
- yr2

=

[1..]
3

r252 1 [:1 1

4. Write the matrix whose entries are the sums of the

corresponding entries of the matrices:

[I

1

2

0

5

0

1

-1

-2

-1

0

2

0

and

0

-1

*1

3

1

0

0

2

1

1

-1

1

Prove that equality of matrices is

(a) reflexive: for all A, A - A

(b) symmetric: if. A = Bs then B =-A

(c) transitive: if A = B and B = C then A = C

3.3 The Addition of Matrices

We have already seen that addition of two matrices of, the

same, dimensions by adding corresponding elements of the two

matrices is a quite natural operation and lends itself to

useful applications.

Definition 4. Let A and B be m x n matrices. By the sum

A + B is meant the matrix C where

i
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3 2 1 2 4 4

Example 1, .1 4 + 3 -4 . 2 0

5 1 -2 0 3

Example 2,

3 -1

1 +

-5 -31
2 -1 -4 .

000
0 0 0

7 -3 2 -7 3 0 0 0

To add

[3-

and [1.1 makes no sense because our
5 0 3

definition for addition applies only to matrices having the same

dimensions.

Definition 5. A matrix is called a zero matrix if each of its

entries is 0. The zero matrix is denoted L

(The bar indicates its matrix nature and

distinguishes it from the letter 0 and the

numeral 0,) To emphasize its dimensions m x no

we write ate, or if it is a square matrix of

write Um,

Example 3.

Definition matrix B is called the additive inverse of A

(write as if each element of B is the

opposite of the corresponding element of A.
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Theorem 2. Let M be the set of m x n matrices. Then (M,+)

is an abelian (commutative) group.

Proof. The proof of this theorem has five parts, four

of them to prove the group properties, and one

to prove it commutative;

(a) (M, +) is an operational system. That is, the

sum of any two matrices in M is in M.

(b) For any two matrices A, B E M, A + B = B + A.

(commutativity)

(c) For any three matrices A, B, C E M, (A + B)

+ C .3 A + (B + C). (associativity)

(d) There exists a matrix Z in M, such that for

all A in M,A+ZumZ+A= A. (existence

of identity) (Z of course is ate.)

(e) For each A in M there exists a B in M, such that

A +B = B+AlisU (we denOteBas -A or A

as -B) (existence of inverse element)

Proofs of each of these parts are based on

the field properties of the set of scalars.

We prove (a) to show how this is done, and

Proof of

you are asked to prove the other properties

as an exercise,

Let A and B be in M. Then, for each i 1,

m and, each 1, 2, n the

elements . and bii are scalars in R and

therefore al.,/ + bij is in R, We conclude that

A + B is in Hence (M,4) is an operational

system,
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The existence of an additive inverse (property (e)) makes

possible the operation of subtraction of matrices.

Definition 7. If A and C are m x n matrices then A - C =

A + (-C).

Just as there is a unique solution for the equation

x +a.bin the group (R,+) (namely x - b +_ a), and a unique

solution for the equation ax = b, a pi 0, in the group (B/10),)

1
(namely, x b i) so there is a unique solution for the equa-

tion

X.+ A = B

where A and B are in M, namely

X 2. B + (-A) B -A. Why?
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rd

. b
(c)

e f 0

0

0

0 a b -a -b
(d) 4

0 c -c -d

2. Subtract, if possible.

(a)
2 3

(b) 3 - D a
5 -6 47 4 - 2

1

3. Let A and B be matrices having the same dimensions.

Prove:

( a) -( A + B) - ( -A) + ( B)

(b) -(-A) -, A

(c) -U I
Find values of a, b, c, and _d that satisfy:

+ 3 16 c 3d

-5

a .. 2

1a 2 2b + 3. 3

3[ 9.

a + c 2b2 - d 3.0 0

10 2

(s)

(b)

-Let

(0' or 0,13.4 and B in M

M be the -set of m x n matrices, Prove:

A + B B + A,

(b) For all A B C in M, (A + B) + C In A + (B + C

(c) For all A in M, A + tfmn TYnin + A A.

For each .A in M, there is a B in M such that

A + B + A Umn

rase each of the following as a single matrix.

1

1

5 13"
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b c

(d)
2a

(c) d
4a a+b b a-b

g h 0 1 1

3.5 Multiplication by a Scalar

From our definition of the addition of matrices we have:

3

-1 0
[3

r6 4

0 1=2 0

We can express this in

3 2

-I 0

[
another form:

2 X 3 2 X 2

2X-1 2X0
6

-2

[ 4

0

We define formally a new operation on matrices:

Definition 8. If A is an m x n matrix and k is a scalar,

then .by kA is meant the m x n matrix C

where c kai.ij

We should < notice that this new operation of multiplying a matrix

by a scalar is different from the operations we have seen, In various

systems including the addition of matrices) we have one set of

elements and we.combine members of the set to obtain new elements

of the same set, Here we 'have two sets - a set of scalars and



-87-

a set of matrices. We combine them to obtain new members of

one of the sets - the set of matrices. Why does it not make

sense to talk of closure in connection with this operation?

However, though this is a new kind of operation, it has

many properties similar to properties we have studied before.

Theorem 3. Let A and B be m x n matrices, and let k and

A be scalars.

(a) k(A + B) = kA+ kB (distributive law)

(b) (k + kA + LA (another distributive

law)

(c) k( EGA) (kL)A (a kind of associativity)

(d) kA a if and only if k = 0 or A =T1

1 A = A

( f) If kA kB and k 0 then A NB B (scalar

cancellation),

Proof of ), Let C = A +-B, then fOr all it j:

cij = aij + bij (definition of +),

kcii = kaij + kbij (distributive property

of (IYF.))

AEC = kA + kB (definition

k(A + B) + kB (SPE, replacing A + B

for C)

The proofs of the remaining parts are based on the properties

of 112+,) and are left for you'in an exercise.

TheOrem 4. Let A be s specific' matrix in the set M of

m x n matrices. Then the set otmatrices

(kA:: k E 10 is a subgroup of (M, +).

of

92
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Comment, Let m = n = 2. To illustrate what (kA : kER)

means, let A = [!

!

I.
]1 4

Proof,

For k = 2, kA = 2
11! 4

as

2f! 17-1
8

3 2 vr 2d7
For k = Vr, kA = Aii

1 Na 4,1g

For k. kA = Lss

'FOr k = 1, kA
1 4

Similarly for each k E R we obtain a matrix

in. (1cA).

Remember, (Course II, Chapter 2) to prove

that a subset of a group is a subgroup we

need prove only:

(a) the subset is an operational system

under the operation of the group,

for every element of the subset, its

group inverse is in the subset.

Proof of (a). Let k1 and 14 be,scalars. Then k1A + k A me

'.' +,1se A by b) of'Theorem 3, Since

k4 + ks E R (ks ko)k is in the subset.

Yon are asked tc,Prove (b) in an exercise.

Theorem 5.. (a) The'subset (qA : q E Ql is a sub

grcuP of kA

(b) The subset LA E Z is a sub-

group of,B,
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(c) The subset (U) is a subgroup of C.

With the aid of Theorem 3 we can solve a

matrix equation such as

-1

3
= 2X +

1 0

where X is a 2 X 2 matrix.

Solution. By Theorem 3(a) the left member can be

written

-3X + [9 -6,
3 -12

1 2X +
1 0

Adding 3X to both members,

3X - 3X +.-9 3X + 2X +
1 1

[I3 -12 1 0

By Theorem 3(b)

[:9 -4 [i.3 -12 (3 + 2)X 1 0

-9

the additive inverse of

to both members gives
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1
Multiplying both members by 5, we get by

Theorem 3(c) and 3(e)

2 12

4
5 (5X) a= X,

This completes the ,solution. See if it

checks,

3.6 .Exercises

Let A
4 2 .5

if k is equal to:

(a) 2 (b) 3 (c)

Express kA as a single matrix,

(e)

Let A ai

(f) 2 + j.5 (g)

1
2

(d) 0

(11)

0

0 1 0 5

each of the .following as .a single matrix.

Express

(a) 2A + B C (b) 3A + 2B 4C

'( `2(A + 2C) 3C (d ) ,,/ ((A +:B + C) - A

0 0 1 1 0 1 0

Let A as 1

0 0

ress each of the following as a tingle matrix.

(a) A + B + C (b) A + B C (c) A B + C)

(d) 2A + 3B + 4C (e) 3(A B) + 2C
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4, (a) Verify the statement:

I! [I. !I [5. [5. 6.1 [5.

= a + b + c + d
d 0 0 0 1 0 0 1

(b) Express : as the sum of four 2 X 2 matrices,
2

each containing three zeros and one 1, and each

multiplied by a suitable scalar,

rd 6.]

(c) Express as the sum of six 2 X 3
e f

matrices whose entries are all zeros except for

one 1, each multiplied by a suitable scalar.

Let A, B, C be the matrices of Exercise 2. Solve each

of the following equations for X.

(a) A + X 8 + C '

(c) 2A +X) s 3X + 28

(b) A + 2X

(d) 3(8 - X) = 2(X - C) -B

, Let A and /I be m x n matrices and let k and A be scalars.

Prove:

(a) (k + I)A = kA + LA (c) kA =a iff k

A In. 11.

(b) (kl)A k(IA) (d) 1

(e) kA = kB and k o imply A so

0 or

Let A be a sPedifio matrix in the set 1M of m x n

matrices, and form the set (kA : k E R). Prove that

everynmatrik of (KA) has an additive inverse in (kA).
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8. Consider the field {Zs s+,} and the set P of 2 X 2

matrices over Z3.

(a) How many matrices, are there in P?

(b) Is (P, +) a group? Why?

(c) List the members of NA) if A fa and k E Z3.
1

Is (kA} a group? Why?
1

(d) List the members of NW where 13 is and
1 1

k E Zs . Is (kW a group? Why?

Find (kA} fl (kW,

2 1 1 2 () 0
(e) Show that

0 2 0 1
,

0
form a sub-

0

group of P

Solve in CZ39+,3 the matrix equation:

1 2
X + 1 3.1

1 .

1 0 1 0 ,

Oa : k E Z4 and A is a specific 2 X 2 matrix with

Be prepared to

(f)

Is

entries in Zs a group under addition?

support your answer,

37 Multiplication of Matrices

In this section we, concentrate mainly on 2 X`2 matrices,

The reason for this concentration lconies in the fact that

multiplication of matric...n. is more complicated than either

addition or multiplication of a matrix by a scalar, and it is

easier to unravel these complications for the relatively

simpler 2 X 2 matrices,



We have seen in Chapters 1 and 2 how matrices are

multiplied. Recall that the entry in the product matrix is

found by multiplying numbers in a row of the first matrix by

numbers in a column of the second, and adding the products.

You may wish to remember this procedure as: "multiply row by

column,"

Example 1, As you follow this example, note the

dimensions written below each matrix.

[3-
32

3

+ 4.2 + 0.3

21 + (-1).2 + 3.3
[1.1

2 IN

2X3 3X1 2 X 1

An m x n matrix times an n x p matrixproduces an m x p

matrix,

Example 2,
c d

e

g
[-.

f

h

ae + bg

ce + dg

of 4. bh

cf + dh

Example 2 may serve as the definition for multiplication

The general definition follows,of 2 X 2 matrices,

Definition 9. Lei A be an m x n matrix, and B an n x p

matrix. The product AB st C is the matrix

whose entry in the ith row Ath column is

the sum of the products formed by multiply..

ing the kth cumber in the ith row of A

by, the kth number in the jth column of-SI,

where k,

1, 2,0

:2,4. 04 In

P (See Figure 3.1 .

and
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lth column

bii

Si

aii ailloosaikwain

sikbkj

Figure 3.1

IIM

ith row
.4.th column

Vis

oiotaCippos

Let us examine in some detail the set M2 of 2 X 2 matrices

under multiplication. Our first question is: Is multiplication

of such matrices commutative? Perhaps you noted in Chapter 1

that it is not. To show that it is not we need exhibit but one

counter-example. To this end let

0
and B

[5.0

0 0

Then AB while BA

and we see that AB BA.

IS multiplication in M associative? We can determine the

0
1

answer by working, with

re P

99



and observe whether or not the product matrix of (CD)E is th3

same as that of C(DE). You will find, if you carry out the

details of these multiplications, that the two products are

indeed the same. We urge you to find these products yourself

as a profitable exercise and thus prove

Theorem 6, Multiplication in M2 is associative.

Is there a multiplicative identity in M9? We easily show

c d

Let us denote

Theorem 7.

Is there perhaps another matrix in MI that behaves like

01 01 c d

1 ° by Is. This leads to our next theorem.
0 1

211

!c d]

For any matrix A in M2, Ala = I9A = A,

[-.

I2 in this respect? If there were, say x y , then

z w

would equal
But [!

!] !]0 1 z w

Hence

proves our next theorem and permits the definition that follows

its
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Definition 10. The multiplicative identity (or unit

I.matrix in M2 18 12

[- 1
Having established a unique identity matrix in M2 we go

on to investigate whether or not for every matrix in Me there

is a multiplicative inverse in M. We can exhibit a matrix in

[I

M2 that has no such inverse. Let A = 1 2 , If B is its

1 2

[I

inverse, let it be represented by x y . Then

z w

1

ii

2 x y 1 0

2 w 0 1
a

--]:I

x + 2z y + 2w 1 0

z + 2z Y + 2w 0 1

or

(1) x + 2z 11.

( 3) X + 22 va

(2) y + 2w =

(4) y + 2w =

Look at (1) and (3) . Are there any vaJues of x and z for which

both (1) and (3) are simultaneously true? Clearly not, There-

fore A has no multiplicative inverse.

On the other hand some matrices in M2 do have inverses in

For instance and
2 1 2

-3

-
1, the coding and decoding

1

2 3

matrices appearing in Chapter 1 Sedtion 1.7 are inverses of each

other. Verify.
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To summarize what we have said about (Ms):

1. It is an operational system. This follows directly from

the definition of multiplication.

2. It is not commutative.

3. It is associative.

4. It has a unique identity II,

5. Some matrices in M2 do not have inverses in Ma; some

do.

3,8 Exercises

1, Let A =
1 0

Compute each of the following.

0 -1

(a) AB (b) AC (c) BC

(d) BA (e) CA (f) CB.

For A, B, C in Exercise 1, determine whether or not

-BAs AC = -CA, BC -CB, Do you think that forAB

all matrices D and E in Mos DE _ -ED? If not, exhibit

two matrices for which this is not true.

-2 3
Let A we mean AA. Find A.

2 1

Suggest what A' means and find

Show that has no multiplicative inverse in

no matter what values a and b take on.
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!]

5. Let A
1 3

0 1

[1 0
C

r1 0

Determine whether each of the following statements is

true or false.

(a) A(B + C) az AB + AC (c) A(B + C) = AB + CA

(b) (B + C)A AB + AC (d) A(B + C) 3:1 BA + CA,

Let E
b a

c

-
and F =

-d c

(a) Prove EF = FE.

(b) Note for E that e11 e3. and eta xi -e21; also

note a similar statement for the elements of F.

Show that EF has the same property.

Let b = 0. Show EF = aF.(c)

Show by a direct substitution that:

r0
(a) - 21 is 13.1 when B

(b) 312 = rr, when A

(c) e 2A + 212 rril when A

Let A and B
0 1 2 1

Shaw by direct substitution that:

(a) + B)(A 'B ) A

(b) A + B)(A + B) AR ,+ 2AB + B

(c)

3

1

Explain why the statements in (a) and (b) are

inequalities that are true while (a + b)(s. b
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a2 - b2 and (a + b)(a + b) = a2 + 2ab + be are

equalities when a and b are real numbers.

[!

tr9. Show that A = satisfies X9 = U. Find another
1 0

matrix that satisfies this equation.

10. Find the following products:

(b)
-1 0 -1

[.

( a)
1 00 [I

ri

1

[a

1
1

1.2

Fi

11
(d) [

0 -1 0 -11 EL 1
(c)

0

II[--

How many square roots does the matrix 1 0 have?

Are there any others? 0 1

Discuss the solutions of the equation

XI - 12 re 152

(X2 is a 2 X 2 matrix.]

370 Multiplicative Inverses in M2

In this section we, present a test, by which one can deter-
,

matrix in Me has an inverse. If it does,mine whether or

then we want to know whether or not it is unique, and how to

has no inverse.

(our friend the

coding, matrix in Chapter 1) does have an inverse. How do we go
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about finding that inverse? Let us assume that

inverse, Then

is that

[5- [
should equal

[0 1

1

That
+ 3z 2y +

hat is,
x + 2z y + 2w

should equal [1-
0 1

This equality between the two matrices demands equality

of corresponding elements. That is,

(1) 2x + 3z . 1 (2) 2y + 3w = 0

(3) x + 2z = 0 (4) y+ 2w = 1

Observe that equations (1) and (3) have the same variables, x

and z. We have solved systems of equations before.

(1) 2x + 3z = 1

(3) x + 2z = 0

(1') -2x - 3z sir -1 (multiplying each member of (1) by -1)

(3') 2x + 4z . 0 (multiplying each member of (3) by 2)

z 1 (addig members of (1') and (31))

When we replace z with -1 in (3) we readily find x = 2,

Now (x,z) = (2, 1) satisfies both equations (1) and (3).

By the same method used on equations (2) and (4) we get (y01)

(the decoding matrix),

does indeed equal I and

12, and our search is ended.

( -3, 2).

Thus we find

Finally we note

105
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2 3

['2

is
2 -

i,
1 1 2

Let us broaden our investigation to include any matrix

rc
r;

A = in Hs. As above, assume its inverse is 1.1
d

[I

a b x ym
I.

1
Then

c d
.

1

This leads to four equations

(1) ax + bz = 1

(3) cx + dz = 0

Let us assume that a 4 0.

Al

As

(2) ay + bw =a 0

(4) cy + dw = 1

Thus equations (1) - (4) can be solved for xo y, w, z

(hence an inverse matrix can be found) if and only if

ad - bc = h 0 o.
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rTheorem 9. The matrix A sa has an inverse Ma

iff ad - be 4 O.

Notation. We denote a multiplicative inverse of A by A-1.

Definition 11, A matrix that has no inverse is said to be

singular. A matrix that has an inverse is

called non-singular or invertible,

Continuing our investigation to find what the inverse of

[a- 1
.A is, we assume ad - be 0, and check

z w

d ad - be
E h

a c d c a cd - cd
E E . E

II-ab + ab

-bc + ad

Keeping in mind h ad be, 'the last matrix is seen to be

[17.

, or 12,
0 1 d

E
b

"E a b
One more point. Will . also be 12? Trycacd

"E E

it. You will find it is. 'So comes our next theorem.

[I

a b
Theorem 10, If A 1.1 and h ad - b 4 0, then

c d

to write A-1 as w , In this
-c a

form the formula for an inverse in Ma is easily remembered.
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Theorem 11. A-1 is unique.

You will be asked to prove this as an exercise.

Example. Solve: 3x + 2y = 6

x + 4y = 5

3

Solution, Let A be the coefficient matrix

[-1 4

Let X and C = [6].
5

The equation can then be written

AX = C (check).

Since in A, h = 3.4 - 2.1 = 10 4 0, A has

an inverse.
4

It is A-1 =
-1 3

Then A-1AX = A-1C (left. operation) and

we can easily show

X = A-1C,

To find what. X is we need only obtain the

product A-1C, as follows:

Check: 3(1) 2(i)

5

(Compare thismethod of solution with that in

chapter 2.)

108



3.10 Exercises

1. Determine whether or not each of the following

matrices has an inverse. If so, find it.

r0 5-1 [3

5
1 2 6 2

(a) (b) 1 c) [_

[1. 3-]

(d) ,.r
c 1

(e) (f)
3 4 -1 : 3

[! 1-]

[7

A(g) (h) I 0)
-1 2., 1 1

V ii.

2. For what value(s) of x will each of the following

matrices be singular (non- invertible)?

(a)
6 3

) Let A

(b)
4 x

0 2

(b) Let B = kIa,

Prove r/

Investigate

2 x-2J[!

4 2
(a)

1 x-2

Prove A-1
0

a nonzero scalar.

this question:

o

1

2

the only matrix in

Ma that is its .Own'inverse?

Prove that a: a singular matrix.

and B be non -zero Ma::rices, in Ma such that AB = U.

invertible. (Hint: Use
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7. Let A be an invertible matrix and B a singular utrix,

both in Ma. Determine whether AB and BA are invertible

or singular. Support your answer with examples (or a

proof if you can find one),

8. (a) Let A and B be invertible matrices in Ma. Show

that AB and BA are also invertible by displaying

some examples,

(b) Prove: (AB) -1 = B-1A-1 if A and B are invertible

matrices in M.

9. Using the method of multiplication by inverses, solve

each of the following pairs of equations, and check,

(a) x + 3Y = 5 (b) 3x + 2y = 5

2x + 5y = 8 2x+ y . 3

(c) 5x + 3y . 13

2x+ y = 5

(d) 2x - 7y 3

x 3y . 2

(e) 3x + y = 14 (f) 4x + 3y . 26

4x + 2y = 20

(g) 3r + 46 = 1

5r - Is = -12

5x- Y =4.

) 5u - 3y . 27

6u + 2y = 10

ax + by

bx + ay 2

(1) ix ;5T = 20

1 1
x + y

3
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3.11 The Ring of 2 X 2 Matrices

The set of all matrices is so rich that we find it advisable,

both for possible applications as well as further mathematical

study, to restrict our investigation to various subsets of the

set of all matrices.

We have already found that the set of m x n matrices,

Mm x no for a given m and n, and with addition as we defined it,

constitutes a commutative (abelian) group. For m n we cannot.

define a multiplication for this subset of matrices, though we

can define a multiplication of m x n by n x p matrices. But in

this latter case if A is an m x n matrix and B an n x p matrix,

we can multiply them to obtain AB and the result is an m x p

matrix, but.BA is a meaningless expression unless p = m. (Why?)

If m = n = p we have squarematrices. Then both AB and BA are

defined, but in general AB pi BA. If we restrict our investiga-

tion to square matrices - and:we will further restrict this to

considering 2 X 2 matrices, elements of Ma we find that we

have a richer structure than a group since we have two opera-

tions, Addition.and multiplication, We will symbolize this

structure as (140,1-,). We know that (Mos+) is an abelian group,

and that (M2,.) is an operational system in which multiplication

is associative. Moreover, it is not hard to see that in (Ms+ .)

multiplication distributes over addition (both from the left

and the right),.

A structure like (Ma, +with the properties given above

is called a ring.

111
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Definition 12. A system (B, +,.) is called a ring if

(a) (B, +) is an abelian (commutative)

group;

(b) (B,.) is an operational system in

which a.(b.c) = (a.b).c

(c) In (B, +,.)

(i) a.(b + c) = a.b + a.c

(ii) (b + c)a = b.a + c.a

Theorem 12. The system (M2, +,.) is a ring.

We found earlier in this chapter that the set M2 has an

identity element under multiplication. This property is not an

essential characteristic of a ring. When a ring does have a

multiplicative identity element, usually called a unity of the

ring, we call the ring a ring with unity.

Theorem 13, The set (Mss+s) is a ring with unity.

We will see in the exercises that there are rings which do

not have mUltipliCative identity elementS.

In Section 3.13 we will study a subdet of'2 X 2 matrices

which inClUdet all invertible 2 X 2 matrices. One interesting

Theorem 14, The set of invertible matrices of order 2 is

a group (non-commutative) under multiplication.

3.12 Exercises

1, Give a complete formal proof that (Kis+

with unity.

is a ring

112
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2. Give a complete formal proof that the set of invertible

matrices of order 2 is a group under multiplication.

3. Investigate the set of all integers to see if it is a

ring under addition and multiplication. Discuss

commutativity and a unity element.

4. Investigate the set of even integers (E, +,.). Discuss

commutativity and a unity element.

5. Investigate (R, +,.) to see if it is a ring. Commuta-

tivity? Unity? Group property?

Investigate the set of integers mod 7, (Z,,+,.). Ring?

Unity? Field? Group under multiplication?

Investigate the set of integers mod 6, (Z6s+s). Ring?

Identity? Field? If ab = 0, what can you say about

a or b or both? If a 0 and b 0 and ab = 0, then

a and b are called divisors of zero.

Consider the set of matrices:

e"
0 0

.e12

) Ctostruct a table of all possible products

Ring structure? Divisors of



- 109 -

3.13 A Field of 2 X 2 Matrices

In our previous experience in mathematics we have met many

instances of an algebraic structure called a field. Let us

recall the definition of a field. The ring of 2 X 2 matrices

is not a field, because multiplication is not commutative.

The subset of invertible matrices is not a field for the same

reason, and also because this subset does not contain the iden-

tity element for addition, namely

[5.
0 0

Are there subsets of 2 X 2 matrices that are fields? What

conditions must, we satisfy to get such a subset?

If we take the set of invertible 2 X 2 matrices and add to

them the identity element for addition we will have a set which

may have a subset in which multiplication is commutative.

Consider the set Y of matrices of the form

where x, y E R. This set contains

o 1 0

0 0
(x 0, y 0), and also

0 1
(x 1, y = 0),

It is not hard to verify thai.(Y,+) is an abelian group. Since

Y contains 12 we >know that for every A E Irs Aa = A = 120A. We

also know that x* + y* = h is either zero or positive. It is

positive for all elements of .Y except Vr2. Therefore, by Theorem

9, for every A E Y, A 0( No we have an A- such that

A- A,



- 110 --

It remains to prove that for every Y1, Ye E Y

(1) YI.Y2 E Y

(2) YIYe YY1

[2-1 [7:11

Let Y1 S Y2 Calculate Yi Y2 and
yi xi Ys

YeY1 and verify points (1) and (2) directly above. We therefore

have;

Theorem 15. The system (Y, +,.) is a field.

3.14 Exercises

Which of the following matrices belong to Y?

(a)
4 5 6 3 1

'' ' t - '. 1 2 3

( )
1

L
r 1

()
0 0 0 0

..3. 1[
1 1

1 (0
ri.3. 1.

4 - 1 Ati +1

Find the inverses of those matrices in Exercise 1 which

( b)

(g).

( d)

(f)

(h)

proof that Y is a field.

Study the subset of Y consisting of matrices

[lc

-y
for which 101 + ye

Y
115



*5. Consider the transformation whose matrix is

rb -9!A

where as + us 1. Prove that under this mapping

every point of the unit circle maps into a point of

the unit circle.

3,15 Summary

1. Matrices, the equality of matrices, and their addition

were defined formally.

(a) Equality of matrices is an equivalence relation,

(b) There exists an additive identity,

(c) The set of m x n matrices is a commutative group

under addition.

2. Scalar multiplication is a novel mapping which maps a

pair consisting of an element from a set of scalars

and one element from a set of matrices into the set

of matrices,

(a) There are two sets involved in this operation,

(b) Scalar' multiplication has two. distributive

properties and one associative one.

(c) The set of all scalar multiples of a given matrix

is an abelian group,

3. A definition of multiplication of matrices was made

formally.

It can be performed only if the first matrix has

as many columns as the second has rows.

(a)
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(b) Therefore, square matrices of the same order can

always be multiplied.

(c) It is associative when it is possible.

4. For multiplication in the set 14 of 2 X 2 matrices,

we found

(a) (Mos.) is an operational system.

(b) It is not commutative.

(c) It is associative.

(d) It has a unique identity, I.

(e) Some matrices in M2 do not have inverses; if they

do, the inverse is unique.

(f) A matrix A = in Ma has an inverse iff
c d

h = ad - be 0. Then the inverse A-1 -

I

1

I!-c a

5. We defined a new algebraic structure called a ring,

(a) The set (M2,+,) is a ring with unity.

(b) The set of invertible matrices of order 2 is a

non-commutative group under multiplication.

(c) We found rings with and without commutativity;

with and without a unity; with and without

divisors of zero.

6. It is possible, to find subsets of Mg which are fields.

3.16 Review Exercises

1. Solve for matrix X and check.

(
2X = 3 X -

1 5

117
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2. Prove that (Z4, +,.) is a ring.

3. For each of the following either give its inverse or

explain why it has no inverse.

[14, 1.1 [1. r(a) (b) (c) (d)
11 3 2 3 3 2 -2 -1

4, Express as a single matrix:

[c rxyl

(Hint; It is a 1 X 1 matrix.)

[! !]

5, Show that A = satisfies A* - 4A - 512 = U2.

6. Verify that
3'

7 5 5 3' '3
1[3.

2 2 3 1 2

'3

1 4
5 5

Does this mean that is a multiplicatiVe iden-
2 3

5 '5

tity? Explain your answer,

7. Construct a 5 X 4 matrix whose elements a are given

by aii als min (i,4).

8. If x* + x - 1 = 0, show that

xg + x

[!

-x* x

x 0 x 0

If we switch around the elements of a matrix so that

its rows become columns and its columns become rows (in

the same order), we obtain a second matrix called the

transpose of the original matrix.
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[I

IfA=0 Osconstruct the transpose of A. What

1 2

is the transpose of B = [1 2 31 ?
J

10. Show that the matrix

(I) I
A =

satisfies the equation A9 = 0. Can you find other

matrices in Ms that satisfy this equation?

[! !]
11. If A = B = , find AB and BA.

1 0 1 0

What do you observe? Can you find other matrices that

behave thin way with each other - or with A or B?

12. Determine which of the following sets are rings under

addition and multiplication;

(a) the set of numbers of the form a + bo; where a

and b are integers;

(b) the set of numbers
a

where a is an integer.

13. Show that if A E Mis B E B Ors, and AB = then

A cannot have an inverse. Can B have an inverse?

119



Chapter 4

GRAPHS AND FUNCTIONS

4.1 Conditions and Graphs

In this chapter we will study many questions and problems

which involve graphs. You have constructed graphs already in

several situations: (1) lattice point graphs where only points

with integer coordinates were used, (2) graphs in coordinate

geometry where oblique coordinate axes were used much of the

time, and (3) graphs of functions where perpendicular coor-

dinate axes with equal units were used. In this chapter we

will consider only graphs in a rectangular coordinate system.

y

3
P(asb)

2

1

_ _

-14 -3 -2 -1 1 2 3 a 4

-2

Figure 4.1

Recall that for each ordered pair (a,b) E R x R, P(4,b) is

the point of the plane whose x-coordinate is a and whose

120
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y-coordinate is b. (See Figure 4.1.) Since the assignment of

ordered pairs of real numbers to points of the plane is a

one-to-one correspondence, we often talk about the point (a,b)

when we mean the point with coordinates (a,b).

Example 1. Given the condition 2x + y 3, what is its

solution set? What is its graph?.

One way to write the solution set is, of course,

S = ((x, y): 2x + y 31. (Unless the contrary' is stated we

take x, y E R to be understood.)

Since

2x + y 3 iff y S -2x + 3 iff y = -2x + 3 or y < -2x + 3,

we can write,

S = ((x,y): y = -2x + 3 or y < -2x + 31

= f(x,y): y = -2x + 31 u f(x,y): y < -2x + 31

This is about as far as we can go in this direction in examin-

ing the solution set, S. Now let us see what the graph, T, of

The graph of ((x,y):y = -2x + 3) is easy to draw since 117 is a

line with slope -2 and must intersect the y axis at (0,3). Now,

the line y = -2x +.3 divides the plane into 3 subsets: (1) the

line itself, (2) the open halfplane "above" the line, And (3) the

open halfplane "below" the line. Take first a point (u,v) in-the

open halfplane below the line (see Figure 4.2).
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Figure 4.2

The point on the line with the same x-coordinate, u, has y-coor-

dinate -2u + 3. Clearly, v < -2u + 3. That is, all points below

the line must have coordinates satisfying the condition y < -2x

+ 3. The graph of our solution set for y -2x + 3 is thus the

line plus all points "below" the line. This is indicated by

"shading in" the graph below the line. On the other hand, it is

easy to see that points "above" the line must have y-coordinates

satisfying 1, > -2x + 3, as is shown in the diagram for the point

(w, z). In thiS chapter we will be studying conditions, WhiCh

are open sentences in twO variables, denot,d C(x, y).

Example 2, Construct the graph of the condition C(x,y):

!-x + 3y > 12,

We first solve the condition + 3y > 12 for y. Thus

-x + 3y > 12 iff 3y) x4 12 iff y > x + 4. We then graph

1y = + 4. The graph of y / + 4 is the set of points above

the l 4xy = + 4 (the shaded region is Figure 4.3).

02
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To indicate that the line is not part of the graph, it -J.s "broken"

or "dashed."

Figure 4.3

Thus, given the condition for a non-vertical line, y.= ax + b,

we can write the conditions for the halfplanes determined by the

line:

(1) y Z ax + b is the condition for the halfplane above

the line. y > ax + b is the condition for the open

halfplane above the line.

(2) y ax + b is the condition for the halfplane below

the line. y < ax + b is the condition for the open

halfplane below the line.

Because of the correspondence between lines, halfplanes, and

their conditions we often sp3ak of the line y = 3x + 2 or the

open halfplane y > 3x + 7, and so forth.

Example, 3. Graph the condition C(x,y): y S Ixl.

Since

I iffy = Ix1 or y < Ix',
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the solution set is

((x, Y = lxI) U ((x, Y): Y < lx1).

To graph y Ix!, break the problem into two parts,

1. If x Z 0, Ixl = x; so that the

graph of y =.1x1 is the same as

the graph of y = x for x > 0.

2, If x < 0, Ixl = -x so that the

graph of y = lx1 is the same as

the graph of y = -x for x < 0.

The graph of y = lx1 is shown in Figure 4.4(a). Notice

that this graph partitions the plane into three sets of points -

the points of the graph of y = IxI, those above this graph, and

those below it. The coordinates of all points below the graph

of y = Ix' satisfy the condition y < Ixl, The graph of y Ixl

is shown in Figure 4,4(b),

(a) c)
c<lai

Figure 4.4 (a)
Figure 4.4 (b)

Example 4. Graph the condition lx1 + lyI = 2.

It is best to do this problek by constructing the graph one

quadrant at a time. Figure 46(a) shows the details of the analy-

sis, and the graph is constructed in Figure 4,5(b),

19/1



- 120 -

< 0, y > 0

Ix1 + lyl = -x + y = 2

y = x + 2
1

x < 0, y < 0

Ix! + IYI x -y = 2

y = -x

0

(a)

y

x> 0, y> 0

Ix' + lyi = x + y = 2

y = -x + 2

x > 0, y < 0

Ixl + lyl = x -y = 2

y = x -2

(b)

Figure 4.5

Thus, the graph is constructed in "pieces," one for each

quadrant.
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Questions. (1) For what points is lx1 + IYI < 2?

(2) For what points is Ix! + ly1 > 2?

The answer to (1) is the points inside the square, and for

(2) the answer is the points outside the square. Check several

points to see that this is a reasonable answer,

The graphs in Figures 4.4(a) and 4.5(b) both have symmetry

with respect to the y-axis and the graph in Figure 4.5(b) has

several other symmetries. Knowledge of these symmetries.in ad-

vance is helpful in constructing graphs of conditions. For

example, in graphing y S Ix, we could have plotted the points

for x 0 and drawn in the part for x ( 0 so as to produce the

required symmetry with respect to the y-axis.

A figure is symmetric with respect to a line if it is its

own image under the reflection in the line. For the y-axis, the

rule of the line reflection is (x, y) y). This means

that for a graph to be symmetric with respect to the y-axis,

(x, y) is in the graph if and only if (-x, y) is in the graph

(see Figure 4,4 (a)). In terms of the condition y S Ix', this

means that (x, y) satisfies the condition if and only if (-x, y)

satisfies the condition. Since Ixl = Ix1 for all x E R, the

desired property holds for y S Ix1; that is

Y Ix' iff y 1-xl.

The graph of C(x, y) is then symmetric with respect to the

y-axis if and only if C(x, y) and C(-x, y) are equivalent
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(that is, have the same solution set).

Hence, the graph of. lx1 + lyl = 2 is symmetric with respect

to the y-axis since

1-xl IY1 = 2 iff lx1 + IYI = 2.

Again, the reason is that I -xl = lx1 for all x E R. What about

the graph of y = x2? Is it true that

y =x2 iff y = (-x)2?

Yes, since (-x)2 = x2. Therefore, the graph of y = xa is symmet-

ric with respect to the y-axis.

Questions. (1) Is the graph of 1x1 + 1y1 = 2 symmetric

with respect to the x-axis?

(2) What is the test that you apply?

(3) How is the test stated for any condition

C(x,Y)?

The. graph of lx1 + ly1 = 2 is also symmetric with respect

to the line y = x. A coordinate rule for the reflection in the

line y = x is (x,y)-----1.(y,x). As before, then, the graph of a

condition c(x,y) has symmetry with respect to the line y = x if

and only if ex, y) and e(y,x) are equivalent. It is clear that

1x1 IYI = 2 iff IYI + lx1 = 2.

4.2 Exercises

(A11 gra/thing is to be done in a rectangular coordinate

system.)

1. Construct a graph for each of the following conditions on the

same set of coordinate axes.



(a) y = 3x

(b) y = 3x - 1
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(d) Y = 3x + 2

(e) Y = 3x + 7

(c) Do you see any pattern in (f) What does the number a in

your results? the equation y = ax + b

for a line tell you about

the graph?

2. Construct the graph of each of the following conditions

on the same set of coordinate axes.

(a) y = 3x + 4

(b ) y + 4

(c0 = -3x + 4

(e ) y = 2x + 4

(c) Do you see any pattern in (r) What does the number b in

your results? the equation y = ax + b

for a line tell you about

the graph?

3, Construct the graph of each of the following conditions.

Use symmetry as an aid in graphing whenever possible.

(a)

(b)

3x - 2y s 6

y= 1x1 +3

(g) x 5y > 10

(h) y = 1x1 - 2

(c) y 21x1 (i) y = -21x1

(d) y= lx -21 (j) Y = Ix 31

(e) x = lyl (k) x = -IYI

x = lyl + 1 (1) x = 1y1 - 2

4. Construct the graph of each of the following conditions,

(a) y < 3x

(b) y < -3x + 4

(c) Y -3x + 4 and x 0

and y > 0

(d) y 3x + 2

(e) y K, -3x + LI- and x 0
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5. Construct the graph of each of the following conditions:

(a) lx1 + 12Y1 = 5

(b) lx + 21 + y = 1

(c) Ix + 2y1 = 4

(d) ly1 > Ix'

(e) Ix' IY1 = 3

*(f) ixl - 1y - 11 = -2

(g) 2y = lx1 + x

(h) 1x1 + x < 2y

6. The rule for the reflection in the origin (a point re-

flection) is (x,y) ----b-(-x, -y). A graph has symmetry

with respect to the origin if and only if it is its own

image under the reflection in the origin,

(a) If a graph is symmetric with respect to the origin

and (-3, 4) is in the graph, must (3, -4) be in the

graph? Must (4, -3) be in the graph?

(b) What must be true of a condition C(x,y) in order that

its graph be symmetric with respect to the origin?

(c) Is the graph of lx1 + lyl = 2 symmetric with respect

to the origin?

7. Construct the graph of each of the following conditions.

Before graphing, determine whether or not the graph is

symmetric with respect to (1) the y-axis, (2) the x-axis,

(3) the origin, and (4) the line y = x.

(a) Ix! + IY1 = 5 (c) 1x1 + 12y1 = 3

(b) Ix - 21 + 1r1 = 4 *(d) ix + ri = 1

4.3 Regions of the Plane and Translations

In Section 4.1 the condition Ix' + ly1 = 2 was found to
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have a square as its graph. It was observed that points interior

to this square have coordinates satisfying the condition lx1 + 1y1

< 2. Similarly, points exterior to the square have coordinates

satisfying the condition lx1 + ly1 > 2. Thus, the graph of

1x1 + 1y1 = 2 can be considered as dividing the plane into two

parts of which it is the common boundary.

You also saw that a condition such as y = -4x + 4 divides the

plane into two open halfplanes of which it is the common boundary.

Sets of points in the plane such as the closed halfplanes deter-

mined by a line, or the union of a square and its interiorpor the

unj.onof a square and its exterior, as in the examples above, are

called regions, of the plane. In these cases they are regions

determined by conditions in x and y.

Example 1. Graph the solution set of the condition

y S -4x + 4 and y S 2x and y Z 0. We first

graph the boundary lines y = -4x + 4, y = 2x,

and y = 0.

//////1///
/ // // / ///:iii IA M W

1 r iA AMA /VaIItetaZWA VA WMIAPIWA A 1:74M A IVilA AdwarApawsrAbor-A7AwymffArkin a 10 gob.

Figure 4.6
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The shaded areas in Figure 4.6 show the graphs of the solu-

tion sets of y < -lx + 4 (11(1), y 2x (ggg)s and y > 0 (////).

The triply-hatched triangular region OAB (agr) is (with the

boundary lines) the graph of the given condition. The condition

thus determines a triangular region; that is the union of a tri-

angle and its interior.

Figure 4.7

In Figure 4.7, AVA'B' is given by the coordinates of its

vertices. We refer to this triangle and its interior as the re-

gion 01A1110.

Question. Region 0,1VBI is the intersection of three half-

planes. What are they?

We know that any line in a coordinate plane is the graph of an

equation y = ax + b or an equation x = c (if the line is vertical).

Using the methods of coordinate geometry, we find that

1.31
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(1) 17701 is the graph of y = 6

(2) 47eis the graph of y = 2x - 2

(3) A'B' is the graph of y = -ix +

(See Course II, Section 6.15, Exercise 6.)

Thus, region 0,A1B, is the graph of the compound condition y Z 6

34
and y 2x - 2 and y + -- . Let us denote this condition

by e ( x, y) .

A CIAIBI was obviously chosm with malice aforethought for

it is easy to see that AO,A,B, is the image of AOAB under the

translationT.---T4,a, Let us now explore the relationship of this fact

to the conditions e(x,y) and ei(x,y) which determine the triangu-

lar regions OAB and 01A,B,1 respectively.

First, let (a,b) be any point in the triangular region OAB.

Then its image point under T in the region C'A'B' is the point

(a + 4, b + 6). Since T is a translation (and hence a one-to-one

mapping of the plane onto the pl.ane), it has an inverse T -1=T-1 .

4,6

Then we have, by coordinate rules,

(x,y) T (x + 4, y + 6)

-1
(xa)

T
(x - 4, y - 6)

How is this related to the conditions? First, consider

any point (a,b) in region OAB. Its image (a + 4, b + 6) must

satisfy the condition C' (x,y) for region 0,A,Bi. This is stated,

and the equivalents worked out below.

(1) (b + 6) Z,6 iff b 0

(2) (b + 6) 2(a + 4) - 2 iff b S 2a

(3) + 6) s -4(a + 4) + 1131:
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iff b + 6 < -4a - + 231-4-

iff b + 6 -4a + 4_1

iff b + 6 < -4a + 10

iff b -4a + 4
The equivalents give us precisely the condition C(x,y) for re-

gion OAB, stated in terms of a and b. What does this say? In

particular, it says that knowledge of the condition C' (x,y) for

region 0' Al B' enables us to find the condition C(x,y) for region

OAB, given that region 0' Al B' is the image under a translation

of region OAB.

Now take (x',y') any point in region 0' A' B' . Its pre-image

under T (its image under T-1), (x, - 4, - 6), is in region

OAB and must satisfy C(x,y). This is stated and the equivalents

worked out below.

(1) (y' - 6) 2.0 iff 6

(2) (y' - 6) 2(xi - 4) iff yi -6 2x' -8 iff

2x1 - 2

(3) (y' - 6) 4(xt- 4) + 4 iff - 6 S -;tx/+

4- + 4 iff
3+ . (Check the computations.)

3
Again, from the condition C(x,y) for region OAB and know-

ledge of the translation T the condition CI (xy) for the image

region 0' Al B' is obtained. This is a general result concerning

the graphs of conditions c(x,y) and translations.
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x

Figure 4.8

If G is the graph of a condition C(x,y) and T is a translation

such that

(x,y)
T

T
+ a, y + b) or (u - a, v -

and G' is the image of G under T, then a condition e(u,v) whose

graph is G' is given by

Cl(u,v) = C(u - a, v - b)

(See Figure 4.8.)

To prove this, note that if (u, v) is in G' then it has a

pre-image in G, since T is an "onto" mapping. Since T is

one-to-one, that pre-image is precisely one point, (u - a,

v - b). But (u - a, v - b) is in G if and only if it satisfies

the condition C(x, y). That is, C(u - a, v b) is true.

gample 2, Graph the condition Ix - 51 + 17 - 31 = 2

(See Figure 4.90

Using what we have observed about translations, this graph

can be constructed easily from the graph constructed in Example

4 of Section 4.1.

1.34
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Figure 4.9

The condition is in the form c(x - 5, y - 3). This suggests that

we graph the condition c(x,y), that is, lx1 + Iy1 = 2 and then

apply the translation T whose coordinate rule is

+ 5, y + 3),

The graph of the image should then satisfy the condition c (x - 5,

y - 3) (i.e. Ix - 51 + ly - 31 = 2). To accomplish this, as

shown in Figure 4.9, we find the image of each vertex of the graph

under T and connect them in the proper order.

question. What is the graph of the condition Ix - 51 + ly - 31

2? (See Figure 4.9.)

4.4 Exercises

1. Graph each of the following conditions.
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(a) x S, 0 and y Z 0 and y -x.

(b) y > 0 and x 4 and y < x.

(c) y < 0 and y > -6 and x > 0 and x < 3.

(d) y 0 and y < 5 and y < 2x and y < -3x + 18.

(e) x < 0 and x > -6 and y < 4 and y > 2x + 4 and

y < 2x + 12.

2. Graph each of the following conditions:

(a) x > 0 and 3y - 2x < 6 and 5y - 3x > -3 and 4y + x < 20

and y > O.

(b) 3y + 2x < 9 and y < 1 and y > x - 7.

(Use a "dashed" line to show that a boundary does not

belong to the graph of a condition.)

(c) Find a condition for the complement of the region

graphed in (a). (The complement of a region is the

set of points of the plane that are not in the region.)

(d) Find a condition for the complement of the region

graphed in (b).

3. (a) Graph the compound condition y S -3x + 4 and x 10 and

y 10. Find the image of the graph under the transla-

tion T with coordinate rule

(x,Y)-1--10(x + 5, Y - 7)

(b) Find a condition whos graph is the set of points found

as the answer to 3(a).

4. (a) Graph the condition lx1 + hyl = 5.

(b) Find the image of the set of points in this graph under
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the translation T given by (xly)--21-0-(x + 6, y + 6).

(c) Find a condition in x and y for the image set.

Answer: Ix - 61 + ly - 61 = 5.

5. (a) Graph the condition Ix + 21 + IY + 31 < 3.

(b) Find the image set of this set of points under the

translation T with coordinate rule (x,y) (x - 7,

Y - 3).

(c) Find a condition in x and y for the image set.

6. (a) Graph the condition 1x1 + 1y1 S 3.

(b) Find the image of this set of points under the trans-

lation T with coordinate rule (x,y)------1.(x - 2, y - 3).

(c) Do you see :low the translation T can be used to graph

the condition Ix + 21 + ly + 31 3 from the graph of

the condition I x + ly1 3?

(-5,-3)

-2,-6)

If (a,b) E G' , and (x,y) is

its pre-image under T, how

may (a,b) be written in

terms of x and y? What con-

dition must hold for x and y

in the pre-image set G?

Graph G'of Ix + 21 + ly + 31 S3

(the union of the square and its

interior)

7. (a) Use the graph of y = 3x and the translation T4 5 to
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graph the condition y - 5 = 3(x - 4) .

(b) Why must the image be a line?

(c) What is the slope of the image line?

(d) Do you think you can get the graph of any line with

slope 3 by a translation of the line y = 3x? Why?

4.5 Functions and Conditions

In Course II you learned how to represent a real function

f: A-----11-B by its graph in the coordinate plane. For example,

consider the real function g: R-----4R with rules x---E-1.1x1.

The graph of this function is shown in Figure 4.10.

g(x)

Figure 4'.10

Thus, the function g: determines the set of ordered pairs

(x, lx1), for x E R.. Since g(x) represents the image of x under

g, we write; for any xE R,

g(x)) = (x, jxr.

Also, given domain R and codomain R, and the set of ordered

pairs, ((x, g(x)) = 1x1 and x E Ri the function g:
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is completely determined. This means that from the set of ordered

pairs we can obtain the assignment of exactly one real number g(x)

to each real number x c R. This is illustrated graphically in

Figure 4.10. The process consists of locating the point (ordered

pair) whose first coordinate is x and taking the second coor-

dinate of the point as the image, g(x), of x under g.

Now consider the condition, the equation, y = Ix'. Here

both y and x are variables whose allowable replacements are

real numbers. The solution set of this equation is precisely

the same set of ordered pairs as the set of ordered pairs deter-

mined by g: RJR. In this way there is associated with g the

equation y = z(x) = I xl

Now suppose we consider the function g': [-3, 3]---R, whose

rule of assignment is Ixl. The associated equation for

this function is also y = Ixl. But the solution set of y = lx1

is far larger than the set of ordered pairs determined by 0.

This can be patched up by restricting the solution set of y = lx)

by adding the obvious restriction that x must be in [-3, 3]. Then

the solution set, [(x,y): y = Ix' and x E [-3, 3]1 is the set

of ordered pairs of gi. But still, the solution set of the con-

dition y = Ix' and x E [-3, 3] does not determine a function com-

pletely since it could be the set of ordered pairs for any func-

tion with rule x---p-Ixl, domain [-3, 3] and a codomain which con-

tains the interval [0, 3]. However, all these functions would

have the same range, [0, 3], and would thus be equivalent. In
ti

this sense, the solution set of the condition y = Ix' and x c

[ -3, 3] determines a function.
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In general, if f: A R is a real function with donain

A, there is associated with this function the equation, called

a function equation, y = f(x) such that the solution set of the

:;ondition y = f(x) and x E A is the set of ordered pairs deter-

mined by f: Thus, graphing the function f: A --4-B

means graphing the solution set of the associated function equa-

tion, with the restriction that x E A. Graphing a function then

becomes a special case of graphing a condition C(x,y).

Figure 4.11

Question. Which of the graphs in Figure 4.11 can be

the graph of a function?

In (a), if we pick a point xl on the x-axis whose x-coor-

dinate is positive we find that there are two ordered pairs

(x1, yl) and (xi, y2) which have xl as a first element. This,

then, cannot be the graph of a function with domain R+ since a

140



-136-

function must assign exactly one image to each element of its do-

main. In the set of ordered pairs determined by a function, no

two distinct ordered pairs can have the same first element.

Geometrically, this means that any line perpendicular to

the x-axis intersects the graph of a function in at most one

point. You can readily see that Figure 4.11(b) can be the graph

of a function.

A condition for the graph in Figure 4.11(a) is lyi = x. A

condition for the graph in Figure 4.11(b) is y3 = x and

x E [ -27, 27]. (Different scales are used on the axes of Figure

4.11(b) to make a reasonable display on the text page.) y3 = x

is certainly not an equation in the form y = f(x) but its solu-

tion set and graph satisfy the conditions for a function f with

domain (-27, 27].

Questions. (1) Can the condition y3 = x and x E (-27, 27]

define a function with codomain less exten-

tive than R?

(2) What is the range of any function determined

by this condition?

As before, y3 = x and x e (-27, 27] determines a set of

equivalent functions. Any function whose domain is (-27, 27] and

whose codomain contains [-3, 3] would be a function determined by

the given condition. y3 = x and x E (-27, 27] is called a

function condition.
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Definition 1. A condition C(x,y) with solution set S is a

function condition if and only if no two

distinct ordered pairs of S have the same

first element. The condition c(x,y) is then

said to determine a function with domain

A = (x,y) E S).

If the codomain of the functions considered is R, that is,

we consider only functions f: A > R, then the function

condition y3 = x and x E [-27, 27) defines a single function.

Likewise, any function condition then determines a function with

domain A = (x,y) E S).

Example 1. Consider the conditions

(a) 14 + IY1 = (b) Ix' + 1y1 = 5 and

y 2 0 and x E [-5, 5]. What are the graphs

of these conditions? Are they function

conditions?

(a) The solution set of this condition is empty,

since lx1 .k 0, lyl 2 0 and hence 1x1 + 1y1 2 0

for all x, y.
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(b) The restriction y 2 0 makes this a function

condition. Otherwise, the dotted lines in

Figure 4.12 would be part of the graph, in

which case the condition would not be a

function condition.

You may have noticed that function graphs as well as graphs

of conditions may have symmetry with respect to the y-axis or with

respect to the origin. For example, in Figure 4.12, the graph

has symmetry with respect to the y-axis. That is C(x,y) is equi-

valent to C( -x,y) so that the graph of the condition is mapped

onto itself by the line reflection (x,y) >( -x,y). It is

easy to see that a corresponding criterion for the graph of a

function to be symmetric with respect to the y-axis is that for

all x in the domain of f, f(x) = f(-x), The graph of a function

cannot have symmetry with respect to the x-axis. Do you see why?

Also, in Figure 4.11(b), the graph has symmetry with respect

to the origin, since

(-y)3 = (-x) iff y3 = x.

For a function graph the criterion for such symmetry is that for

all x in the domain of f, -x is in the domain of f and f(-x)
-

-f(x). Thus, note that for (x,y) in the graph of f,

(x,y) = (x,f(x))

so that,

( -x, -y)

If f(x) = x3, the test is

f(-x)

-f(x)) = ( -x, f ( -x)).

1.43
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Example 2. Test the graph of (a) f(x) = Ixl + 2

(b) g(x) for symmetry with respect tc

the y-axis and with respect to the origin.

(a) f(-x) = I -xI + 2 = Ixl + 2 = f(x). Therefore the graph

is symmetric with respect to the y-axis, but not symme-

tric with respect to the origin.

1 1
(b) g(-x) =.07 = - = -g(x). Therefore the graph is symme-

tric with respect to the origin but not the y-axis.

In Course II, when you studied real functions, a special

function called the postal function p: Rt----4 was introduced.

The rule for p was that if b - 1 < x S b, where b - 1 and b are

consecutive natural numbers, then x 'Thus P(4,5) = 1,

p(24) = 3, etc. This function is a variation on a special func-

tion that is a useful and interesting one to study in develop-

ing a deeper understanding of real functions, called the "grea-

test integer function." The greatest integer function assigns

to each real number x the greatest integer that is smaller than

or equal to x. It is usually denoted by the symbol [x], whence

it is called the-bracket function.

More formally, the "greatest integer function" 1[ ], is the

function of R to R given by the rule x----.[x] where [x] = a if

2
a is an integer and a x < a + 1. Hence (.5] = 0, [2.-3 ] = 2,

[JR] = 1, [-2.3] = -3. To satisfy yourself thAt this last is

true, locate -2.3 on a number line. The first integer to the
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left of -2.3 (less than -2.3) is -3

-2. .5 23

(""N
3

(:) K*N
-3 -2 -1 0 1 2 3

rigure 4.13

In terms of an arrow diagram, Figure 443, this function maps

each integer onto itself; and every real number between two con-

secutive integers is mapped onto the immediately preceding inte-

ger.

4

3

2

1

y

I- 0

-1

Figure 4.14

The graph of y = [x],

4

which is the graph of the greatest in-
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teger function, [ ), restricted to the interval [ -4, 4] is shown

in Figure 4.14. Because of the appearance of this graph, this

function is sometimes called a step function. Notice that there

is only one point of the graph with first coordinate 3, for ex-

ample. The point (ii, 3) is not in the graph. This is denoted

by the little circle (see arrow).

4.6 Exercises

1. Write the function equation for each of the real functions

of R
+

to R given as follows:

(a) x- >1 + x3 (d) x f >14

(b) x---E--->i (e) x '1 + x

(0) x---L--->3x + 5

2. Consider each of the following equations carefully. Which

of them are function equations for the domain specified?

Explain why or why not in each case.

(a) y = 2x - 7, x E R (g) y = X, x e R+

(b) xa + y = 7, x E R (h) lx1 =Y, x E R

(c) 1Y1 = x, x f R *(f) lx + yi = 7, x E R

(d) 'xi + lyi =17, x R (j) x3 + lyi =10, x ER

(e) --Y;3- y1 u 12, x E (x: x E R, x> 1)

(f) LL 108, x e 114-
1 + x

Gragh each condition.

Discuss the symmetry of the graphs of each of the following

functions with domain as given and codomain R.

(a) f(x) = x e R

(b) f(x) xa, x e R

1.46

(c ) f(x) Exls x e R

(d) f(x) 3x, x E R
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(e) f(x) = 3x + 4, x E R (f) f(x) = (x( - x, x E R

(g) f(x) 41
if x 0

8i (h) f(x) = 6, x E R
0

*4 Graph each of the following conditions. Determine which of

them are function conditions with coeomain R. Give a

reason for your answer.

(a) IA = Ixl and x E R.

(b) [y] = x and x E

*(c) [y][x] = 1 and x E [0, 1].

(d) IYI = Ix' and y S 0 and x E R.

(e) ly1 = x and y Z 0 and x 4 11-1. U[0).

(f) y2 = x and y 1 0 and x c 11-1. U[01.

(g) y = x3 and x ER.

*(h) [y] = [x] and x E R.

4.7 Functions and Solution of Equations

There are many problems that can be solved using the graphs

of functions. Some of these applications are not readily seen

at first. Let us begin by examining a function given by its

graph.

Figure 4.15
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A basic problem that may be solved using a graph is finding

all values x in the domain of f such that f(x) = a. The points

that have these x-values are called a-points of f. The x-values

of the a-points constitute the x-values of the solution set of

the system of equations y = f(x) and y = a. This is illustrated

in Figure 4.15, where xl, x2, and x3 are the x-values of the a-points

of f. An important special case is the set of zero-points of f.

The x-values of these points represent the solutions of f(x) = 0,

and these x-values are called the zeros of f. For our example, the

zeros of f are z1, z 2 and z3, and are the x-coordinates of the in-

tersection of the graphs of y = f(x) and y = 0 (the x-axis).

Given the graphs of two functions f and g (Figure 4.16) we may

solve the equation f(x) = g(x) graphically. The solution set is

(x: f(x) = g(x) and x is in the domain of f and in the domain of

gl. Graphically, these are the x-coordinates of the points of in-

tersection of the graphs of y = f(x) and y = g(x).

Figure 4.16

ThidPrOcett is illuttrated,:in,Tigure'4.16. The solution'set is
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fxl, xa, x3, x41. Of course we may also read the y-coordinates

and obtain the solution set for the system y = f(x) and y = g(x).

Now let us look at some examples.

In Chapter 2 of Course III we solved systems of linear

equations such as:

3x + 2y = 12

5x - 3y 27

Since the graphs of these equations are non-vertical lines, they

are function conditions and the solution of such a system can be

reconsidered from the point of view of functions. Solving each

equation for y we obtain:

y = -
3

x + 6
2

y =
3

x - 9

Since these are function conditions, they define two functions f

and g with domain R. Hence we write:

- x + 6
2

3
x - 9

We must, then, find all values of x such that f(x) = g(x), This

is easily done graphically since we know the slope and the y-inter-

cept for each line (Figure 4.17). We shall get only approximate

solutions from the graph. It appears that the single value of x

is approximately 4.7 and the corresponding value of y is about

-1.1. You should check this in the original equations and also

solve the original equations algebraically as a check on this

149
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approximate solution.

x

Another use of these methods is to solve several equations

from the graph of a single, function equation. For 'example, the

graph of y = f(x) = xa is:given,in.Figure 4.18; with the unit

on the x-axis larger than that,on the y-axisi) for convenience.



- 146

Figure 4.18

x

Now suppose we wish to solve the equation x5 5 = 0. x2 - 5 = 0

iff x3 = 5 so that the solution of the equation is the set of all

values x such that f(x) = xa =.5. Which, in turn, is the set of

5-points of f. Thus,-we draw the line y = 5 on our graph and read

the x-coordinites of the intersection with the graph of f(x) = x2.

These e.re:ApProXimitely'x = 2.2 and x

.Question: Does f have any -3 points? What geometrical rea-

son can you give :for' your answer?

An interesting application of these methods is the graphi-

oal solution:of apace time problems.
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Example 1. A car travelling in a straight line at a uniform

speed of 50 miles per hour passes point A at

2:00 P.M. Point A is ten miles from the start-

ing point 0. How far is the car from A at

4:00 P.M.?

To set the stage with this simple example, we denote the path

along which the car is travelling by a vertical axis, the s-axis.

To denote the passage of time, we use a horizontal t-axis, t

being the time elapsed since the car passed point A (Figure 4.19).

The equation relating the s-coordinates and the t-coordinates

is s = 50t + 10, since the car ten miles from 0 when time be-

gins, and the speed, v, is uniformly 50 miles per hour. This

is the equation fora line in the sot-system with slope 50 which

intersects the vertical axis at 8 - 10.

This line has been drawn in Figure 4.19. (It is customary to

refer to this AS an sot-coordinate system, even though the first

coordinate of an ordered pair that designates a point is always

the t-coordinate.

Figure 4 J9
1
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This is a function graph. We denote the function by its equation

s = f(t) = 50t + 10. To answer the question asked in the exam-

ple, we must find f(2). This is done graphically. f(2) = 110.

But this is the distance from 0. Hence the car is 100 miles

from A at 4:00 P.M.

At what time is the car 70 miles from 0? This is a "70-point"

of f. Draw the line s = 70 and read the t-coordinate, 1.25, approx-

imately. Checking algebraically,

70= 50t + 10

50t = 60 so that t = 1.20.

We have used this very simple example to introduce the ideas.

Now a more challenging application.

Example 2. A radar station located at point 0 picks up

airplane A 150 miles due east of 0 at 1:00

A.M. The plane is approaching the station

at a calculated speed of 6 miles per minute.

At .1:16 A.M. a second airplane is picked up

240 miles due west of the station and approach-

ing the statton: at a calculated speed of 8

miles per minUte, At what time will each

plane pass Over the station? At what time

will One Imiss-:overthe other ?' We assume some

vertical separation to avoid collision:

A natural choice for the origin of an sst-graph for this

0.. Since the radar operator becomes
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concerned about the problem at 1:16 A.M. when the second plane

appears, we have made the zero point for elapsed time at 1: 16

A.M. Thus, 1:00 A.M. is -16 minutes elapsed time. On this s, t-

system the function graphs for the progress of the two planes

are drawn.

24

200

160

(1:00 4
a.m.)

I-16 42 .8 -4

-80

420.,

(wel0)

tans

(trof1(Y)

(tnfi(ta))

I tni I

12 16 20, 24 28 36 40 44

(East)

Figure 4.20

(tn,f2,(tn) )

The s, t coordinates of plane A when sighted are then ( 16,

_

1 We have chosen west to be the positive direction from 0.

See Figure 4.20 Since its velociti is 6 miles per mitiute, the

function graph for is a line' :through
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slope 6. For the plane B, approaching from the west, the sst-

coordinates are (0, 240) and the function graph for s = fa(t)

is a line through (0, 240) with slOPe -8.

The distance between the planes can be determined for any

time. For time tm it is fa(tm) - fl(tm) (See Figure 4.20).

For time to it is fl(tn) - fa(tn). In general, it is

Ifl(t) - fa(t) 1.

To answer the questions in the problem one merely reads the

0-points of fl and fa and the time coordinate of the intersection

of their graphs. From these we obtain:

(1) A passes over station at about 1:25 A.M.

(2) B passes over station at about 1:46 A.M.

(3) One planepasses over the other at about

1:37 A.M. at a point about 70 miles west

of the station..

Study the graph carefully and verify these results.

4.8 Exercises

600

4

200A1

I

I

1

1 I

1

2 3 4 5
5.5

An airplane' a position,relative to a base station at 0 is
-

located'at time '0 hoUrs as 200 miles due north of 0 The plane

is flYing due'north., The graph represents the plot of .distance

.1
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travelled against time as recorded on the instruments at the base

station.

(a) How far did the airplane travel in the first hour?

(b) How far did the airplane travel in the next three

hours?

(c) In approximately how many hours was the plane 500

miles from the base station?

(d) Is there a functional relationship between elapsed

time and the distance the plane travels?

(e) What do you know about the plane's ground speed

from time t = 0 to t = 1? From time t = 1 to t.= 4?

From t 4 to t = 5.5?

Can you make up a reasonable explanation for the

fluctuation in ground speed from interval to inter-

val?

fs)

Because of 'the influence of wind, light course changes,

gaining altitUde, altitude, and so forth, it is like-

ly that an actual plot of the plane' s progress would appear

as in the graph below:

(a) Answer questions (a ) - -(-)

here a function s = f(t) where a

no equation is given.

(b) Find a 600-point of f. Is there more than one 600-

point off?

caw.the result of (b) be explained? I it possi-

-ble?

of Exercise 1. We have

graph is known but
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Figura for Ex. 2. Figure for Ex. 3.

Consider the graph (above right) showing the tracks of two

planes. Make up a story to explain what the graph shows.

Given f(x) =
1 2

4x - 2, g(x) = x + 1.

(a) Construct the graph of f and the graph of g on the

same set of axes.

(b) Find graphically the 0-points of f.

(c) Find graphically the 0-points of g.

(d) USe the graph of f to solve the equation t. xa = 6.

(e) Use the graphs of f and g to solve the system of

equations

1y xa

y x +1

Explain your work.

Given the system of equations:

3x + 2y -=

2y 18

Write, the rules for the functions f and g determined

by the given equations.

Find graphically the set of values of x such that f(x)

g(x)

(b)

157
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(c) Use the values of x found in part (b) to obtain the

solution set of the system given.

6. Repeat Exercise 5 for each of the following systems:

(a) x + 2y = 4

2x - 2Y = 3
(b)

5x + y = 10

2x + 2y =8

(d)
3y = 17 (e) 2 x 2

Y + 3

4.9 Operations on Functions

(c) 2x + 3y = 10

lwE. + gy 5

(f) 3x + y =

x + 3Y = 9

In the study of real functions in Course II Chapter TO

various operations on functions of R to R were defined. We

summarize the definition of these operations on functions below.

Definition 2. If f : R R and g : R R then (f + g],

[f g], and. If g] are functions of R to R

with rules [f + g](x) = f(x) + g(x), [f -

(2c) - f(x) g(x) and (f g](x) f(x).g(x).

l
Furthermore, (-f1 A 3 R is the functionwith

g
44, where the domain Ait

the rule (fi_x)
.15

X E R and g(x) A 0).( X:

x

Now each of these functions has an associated function equation.

For If + it is y as f(x) + E(x). For f 0 it is y = f(x)

g(x). For example, if f(x) 2x3

function equation of (f g] i

y 2 3 (x 2 + x - 1.

g(x) x + 2 t e
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The function equation for [f g] is then

y = (2xa - 3)(x + 2) = (2xa - 3)x + (2x2 - 3)2

= 2x2 - 3x + 4x2 - 6

= 2x3 + 4x2 - 3x - 6.

The function equation for [g] is

230

x + 2
3

and the domain A of [g] is

(x:x E R and x # -2), since x + 2 = 0 if and

only if x = -2.

There are also some other ways that new functions can be con-

structed from given functions. You, may recall that if f.: R--->R,

then [af]: R----11-R is the function defined by [ad(4 = af(x).

For example, if f has the rule f(x) =tx + 2, and a = 2, then

[2f] has the rules [2f](x) 2(2 x + 2) = x + 4. This notion

can also be considered graphically as can the operations of addi-

tion and subtraction of functions (which' was done in Course II,

Chapter 7).
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In Figure 4.21, to draw the graph of [2f] from the graph of

f, each function value is doubled. That is, the distance of each

point of the graph from the x-axis is doubled.

Questions. (1) What is the relationship between the y-in-

tercept of y = [211(x) and of y = f(x) ?

(2) What is the relationship between the x-in-

tercept of y = [2f](4. and of y = f(x) ?

In Course II, Chapter 7, a function of R to R with rule

was denoted by c. However, since there are many such

functions, c is inadequate to name all of them. The notation

co is used to name the particular constant function in our

example.

Definition 3. For any real number a, y = a is a function equa-

tion for the function ca : The functions

ca are called, constant functions.

If f : and% are given, [ea f]

has the function equation y = ca(x) f(x) = a f(x). Hence,

[ea 'f] and [af]make.the same assignments, have the same do-

main and the same codomain. They are, therefore two names

for the same.fUnction.

Another way to.obtain a new function in F, the set,of all

functions of R toll, is to add a constant function to f forming

the function [ f.4.:Pid. Pince:

ff 4.'oai(x) flicY-+ 0.(x):= .f(x) a,

[f +. Os) is also denoted'by (f,+,o). The graph of [f + ea]

can be obtained from the iraph of f as seen in Figure 4.22.

160
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Figure 4,22

Here f(x) = xa and a = 3. Thus, [f + cs] (X) = f(x) + 03(4

= xa + 3. To obtain the graph of [f + 03) = [f + 3] from the

graph of f, each point of the graph is moved upwards 3 units.

Thus the graph of [f + 3] is the image under the translation

with rule (x,y)---0-(xsy + 3) of the graph of f.

Another operation defined on real functions is composition

of functions. If f: A B and g : B----04 are real functions,

g o f : A----11-C is the real function defined by g o f (x) =

g(f(x)).

Thus if f : g : ) 2x + and g(

(1) f o g (x) = f(g(x)) = f(x 3) = 2(x a) +'`3 = 2x3 + 3 and

(2) g o f (x) = ef( )) g(2x + 3) = (2x + 3)s = 4x2 + 12x

Note that in (1 ) ,
2 replaces "x" in the rule for f, I (2)

"2x 3" replaces I" in the rule'for g.

There are two compositions which, are very special in terms
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of their effects in graphing. Let g(x) = 2x be a rule for a

function from R to R. A partial arrow diagram for this function

is shown in Figure 4.23.

Figure 4.23

g determines, of course, a dilation of the line (Course I,

Section 6.9). Now let f be any function of R to R. Then f o g

has the rule

f o g (x) = f(g(x)) f(2x),

In general, if g has the rule g(x) = ax f o g has the rule

f o g (x) = f(ax). If a = 0, f o g (x) = f(0) for all x, so

we exclude a = 0 from our discussion.

There is a strong relationship between the graph of f and

the graph = and a 0. For example, let

: R.----R have the rule

rule g(x) = 2x, f(g(x))

is the algebraic story. In Figure 4,24, we show what happens on

the graph.

: R----1R have the

f(2x) = 12x1. This

162 Figure`'4 24
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For example, to find f 0 g (3), we find the image of 3 under

g on the x-axis, then find f(g(3)) = f(6) by going up to the graph

of f and then go back to locate the point (3, 6) in the graph of

f o g. That is f o g (3) = f(6) = 6. Also, f o g (-2) =

f(g(-2)) = f(-/t) = 4, so that (-2, 4) is in the graph of f o g.

Follow the arrows: The effect of g in the composition in this

case is to "accelerate" the effect of f.

Next, consider what happens if g(x) = x + a. Then f o g (x)

= f(g(x)) f(x + a), Again, the only interesting cases are for

a # 0. Suppose a =. 3. Then f o g (x) f(g(x)) = f(x + 3).

f 11---1R is again given by f(x) Ix'. Thus,

f o g (x) = f(g(x)) = f(x + 3) = ix 31.

The graphic process is illustrated in Figure 4.25.

8
fog( ) .1x +

f(x)

re 11..25

For exemple to find f o g (4) the image of 4 under g,7 is

found on, the x-axis, then the image of 7 under f is located on the

graph of f and assigned as f o g 4 'Other points of the graph
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of f o g (x) = f(x + 3) are located in the same manner. It is

easy to see that the graph of f o g is the image of the graph of

f under the translation with rule (xsy)---(x - 3, y)'. In

general, the graph of f o g (x) = f(x + a) is the image of the

graph of f under the translation with rule (xsy)--1(x. a, y).

The-function equation for f is y = f(x) and the function equation

for f o g is y = f(x + a). You should compare this result with

the work in Section 4.3 of this chapter.

4.10 Exercises

1. Given the following functions of R to. R and rules as shown:

f
I I

x---5-04x]
x x + 5

k.

(a) Write the function equation for each, function.

(b) Write the function equaton- for:

(i) If + (vi) Ef ki Eq + k + Cls

(ii) if + hi h-4 .01" :'(204) 1J * J)

(ill), Eh + k 1 414)1j, ! + 1]

(iv) [f g] i + kJ (xiv) [h ki

g o h (x

Graph:q. and h on ,_the same set of axes and then find

the graph of q 71- hj. by the graphic method.

Graph.4, k and al on the same ,set of axes. Find the
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graph of [q + k + c1] by the graphic method.

Graph g and j on the same set of axes. Then

graph of - g/ by the graphic

Use the graph of g to construct

where 2g)(x) -2[x].

Use the graph of q to construct

% 1where [4 qj(x) = -12x
a.

Use the graph of h to construct

where [h + ca](x) = (x + 5) + 3

Use the graph of g to construct

where [g + 021(x) = (30 + 2.

method.

the graph of

the graph of

the graph of

x + 8.

the graph of

find the

[-2g]s

[-ggjs

ca],

2. Use the graph of (see Exercise 1):

.(a) f to construct the, graph of f o k. Note that f o k (x)

f(k(x)) = 14x1

(b) f to construct the graph of f o h (x) = f(h(x)) =

(c)

f(x + 5) 51.

g to construct the graph of g o k.

(d) g to construct the graph of g o h.

(e) q to construct the graph of q o k.

) q to `construct the graph of q 0 h.(

Set A g ) fo ko and q are defined

in Exercise 1.

(a) Alie the graph of f to Construct the graph of

of f o'

(b) Use the graph"of q to construct the graph of q o

of- o m.

5

f o ko
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(c) What do you observe about the effect of A and m ia

composition, as contrasted with k and h? (See Exercise 2.)

4. The function lul : A > R can be defined as follows: hal

= f o u, where f is the absolute value function, x f > Ix',

of R to R. Thus Jul (x) = f o u (x) = f (u(x)) = lu(x)I.

(a) Graph u : R

(b) Graph Jul : R

> R where u(x) = xa - 3.

> R. Hint: For each point of the

graph below the x-axis, (x, lu(x)I) is the image of the

point by a reflection in the x-axis.

Given two real functions f and g.. of A to R, a function

max(f,g) : A > R is defined by max(f,g)(x) = max(f(x),g(x)).

That is, for each x, the new function chooses the larger of

f(x) and g(x). If f(x) = g(x), max(f,g)(x) = f(x) = g(x)

Copy the following graph and construct from it the graph of

max(f,g). Use colored pencils.

y

4.11 Bounded Functions and Asymptotes

If f is any real function of A to R them(0) is by definition

the real function of B to R with rule [i41(x) , for all

A and f(x) A 0). ibrinllY this function

is written simply Ell or and is called the reciprocal of f

The use of reciprocal is restricted since B is often a proper

subset of A.

166
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1
The simplest reciprocal function is -3 where j is the identi-

ty function on R. Then 1: has the rule x--).1- and

B = (x :xERandx p 01. A good picture of the action of

1
may be obtained by looking at an arrow diagram on a line for 3-

Study of Figure 4.26

in the mapping and that if

Figure 4.26

shows that 1 and -1 are fixed points

> 1, j maps x onto the point -1

such that 0 < 1-4 < 1, and conversely. Also,

to 0, 1(x)I gets very large, For example:

1

as lx1 gets close

.0001---11..l0,00 and .00000001---t--.100 000,000.

Conversely, as I xI gets very large,

zero.

11(x)1 gets very close to

The graph of y the function equation of shows

these relationships in another w o-constrUCt,the,graph of

we shall use a ,technique that can then be applied to sketching

the graph of :f,from the ;given, graph of f, .begin with the

the functiOn equation of See Figure 4.27.)graph of y 7-7

16
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(-3 -3

The points (

3

y a x

2,2)

y =1
2,1/2)

Figure 4.27

1
1, -1) and (1, 1) are in the graph of y = 3c- .

For each value of x between -1 and 1, the point on the graph

of y = x lies between the lines y = -1 and y = 1. Corresponding

to each of these points (except (0,0)) we will get a point

outside these lines whose y-coordinate is reciprocal to that, of

the given point. For exaMple, from -(1, we get (*, 2) and from

-*) we get

points of the line y=

1in the graph of y =
.

Likewise, for

region we get points

1 and y 1. From

x outside the given

inside the region between the lines y

2, e get I) in the graph of

get (-3, ) Continuingrin this way,

cate.d to sketch the graph.

for,.

for

w

.OUgh,,,,,points,may,,-, lo-

A- similar procedure can' be used to sketch the graph 'of 1

any functions', given its graph. The result'of this procedure

a function f given by its graph is 'shown in Figure 4.-28 and

following are the steps in the procedure.
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/b.

Figure 4,28

(1) The lines y 1 and y = -1

with the graph of f marked .

are drawn and the intersections

These intersection points are

also in the graph of . Whys

) Vertical lines dashed are drawn through the points of the

graph*of f where f(x) will have no values for these

values of x, Why?

) Points such as A and B where the graph of 'f has a "peak"

or a "valley" are noted, f is said to have a local maximum

at A an& a local-minimum at B.
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(4) A! and 13, are located by estimation of T1 1
E-f, and 717i6i .

(5) A! is a local minimum for and B' is a local maximum for

1
. The curve can be then sketched in between the fixed

points either side of A! and either side of W.

(6) Everywhere that If(x)1 becomes close to 0, 1x14 becomes

larger and larger. Thus to the right of xis as f(x) gets

close to f(xi) = Os 74--'0-c gets very large so the graph of

1
Textends upward and ever closer to the line x = x1. Note

also what happens near xisbutto the left of xi; also,

near x2 and near x.,3

(7) Where If(x)1 becomes large, 111471 becomes close to O.

Thus for x going to the rightof,x3s the graph of comes

ever closer tp_the Forx::going to the left of Xo

17Fr is negative but the graph also comes ever closer to

the X-AxiS._

The vertical dashed lines drawn in the construction of

the graph of are of special interest. If we carefully examine

1the graph of y in, the vicinity of one of these, say x = x3, we

see that as x gets closer to x3 the graph of 7 gets closer to

the line. However, the graph of I' never actually

Puches the line. ine which is approached arbitrarily

closely (but never intersected) by a graph is called an itSYM13

tote of the graph. The three vertical dashed lines are thus

vertical asymptotes of the graph of If we assume that f

is increasing for x > , decreasing for x < xi, and unbounded

in both cases, then the x-axis is a horizontal asymptote of
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1the graph of ? .

We say that the function 1. is not bounded because, given any

number k > 0 we can find an x in the domain of such that

11(x)1 > k. For example, if k is 1,000,000,000, we take a value

% 1
of x so close to x3, on either side, that 1?(x)1 > 1,000,000,000.

Do you believe this is possible? Think about it.

A function g is said to be bounded if f there is a real

k > 0 such that Ig(x) I S k for all x in the domain of g.

A function, even if not bounded on its entire domain, may be

bounded on some interval of its domain. For example, f is bounded

on the interval [xi, x3]. A suitable -value of k here is k = 3.

Then I f(x) S k for all x E [xl, x3] Geometrically, for f to be

bounded, the graph of f must lie entirely between the lines y = k

and y = -k for some k > 0.

The following are examples of bounded functions of R to R:

(1) any constant fUnction (trivial)

(2) 2: III if x¢ 0 0 > 0

(3)
3c

4' 1

(4) [x].

In (2), g(x )` s: -1 if x < Os g(x) 0 if x = Os and g(x) 'IR 1

if x > 0. The graph of (3) lies entirely .!;between or on y = 1 and

4 ,12 Exercises

Construct the graph of the reciprocal function from the

graph of the function for the functions of R to R given by:

11
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(a) x= -1x1

(b)

(c) x + 5 (g)

(d) x-11-.4.4x (h)

2. For each graph in Exercise 1:

(a) Give the horizontal asymptotes, if any.

(b) Give the vertical asymptotes, if any.

(c) Locate on the graph the points where the recipro-

cal function has a local maximum or a local mini-

mum, if any.

(d) Determine whether the given function is bounded on

its domain.

(e) Determine whether each reciprocal function is bounded

(e) x c1 1

(f) 3

For each function and for each reciprocal function

find an interval on which the function is bounded.

Let B represent the set of all bounded functions with do-

main [0, '1] and codomain R. The graphs'of some examples

47-71

1

are,shown below.
47

1

I

t) an operational'system?., That is,. for

and g e,s,.is-Lf! +:g1 a, unique bounded function of

[0, 1] to R?

(b) Since addition of real functions is generally commu-

tative and associative addition of functions in (B,
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has these properties. Is (b, +) an abelian group?

What is the identity? If f E B, is the additive inverse

-f, defined by [-f](x) = -f(x) for all x E [Os lb also

in B?

For every real number m and every f E B, is [mf] in B;

that is, is [mf] bounded?

4.13 Summarl

1. A condition C(x, y) on R x R has a solution set S c: R x R and

a graph G, which is the set of points determined by S in a

rectangular coordinate plane. The "graph of C(x, y)" is

the graph of its solution set, S. The graph of C(x, y)

has symmetry in the y-axis if y) and C( -x, -y) are

equivalent; symmetry in the origin if e(x, y) and C( -x, -y)

are equivalent.

. The line :y =-.-=ax:'+'-b-partitiont-the plane into three sets:

its own graph, and two open

plane above the line is the

'open halfPlane

Other regions of the plane may be constructed as the

graph of comPosnd conditions.

If G is the :'graph of a oosditioh y), (x, (x + a,

halfplanes. The open half-

graph of y > + b and the

below-the line is the graph of y < ax + b,

y

e.

b) is 'a translation; and if G' is the -image of G under T,

3
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then e'(x,y), the condition for 0', is C(x - a, y - b).

4. If f is a function of A to R with rule x -> f(x), then

y = f(x) is the function equation of f. The condition

y = f(x) and x E A determines a function equivalent to f.

(The graph of f is the same as the graPh of y = f(x) and

x E A). A condition C(x,y) is a function condition if 'and

only if no two distinct ordered pairs in the solution set of

C(x,y) have the same first element. The condition C(x,y)

is then said to determine a function with domain A = (x :(x,y)

is in the solution set of C(x,y)).

5. The graph of a real function f: A ------> R is symmetric with

respect to the y-axis iff f(-x) = f(x). It is symmetric

with respect to the origin iff f(-x) = -f(x).

The special functions of R to R given by x > 1,

x > [x], and x >
1 > x, x > x

were used to construct many other functions of interest.

The a-points of :f are the solutions for x of the system

= f(x, and y a. If f and g are any two functions, the

graphs of f and g may be used to find the" solution of

y f(x) and y = g(x) by fincling x such that f(x)

If f is any' function, a E

al

g(x).

and h(x)

relative

to the graph of f in

f o h is a translation

R arid- al4 0

X + a,

g(x)

f o g and f o h have special

to f. The graph of f o g is simi1ar

that f o g (x) f The graph of

to the right'or to the left of f, depending on whether

properties

<Oora>0.
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9. In investigating the graph of 1, where the graph of f is

given it is found that

(a) if f(a) = 0, a) is not defined, but the line x = a

may be an asymptote of the graph of +0

(b) if f has a local maximum (minimum) at x = b, then -11

has a local minimum (maximum) at x = b.

4.14 Review Exercises

1. Construct the graph of the condition + 1y 21 = 6,

Use the methods of this. chapter. to obtain the graph effi-

ciently. Deteriine. the symmetries of the graph.

2. For each of the following symmetries, draw a graph having

the given, symmetry:

(a). Symmetry in the y -axis.

( b). Symmetry in.. the. x- axis

(c) Symmetry in the : origin.

(d) 404letrY:. in the x -axis; and in the y-axis.

Symmetry in the origin and in the. x- axis.

(a). qr44, the cOmp000 condition y. .. 2 Z.Ix + 31 and y.K 6.

Find the iMage of this. region. under, the -translation

.-. ,:, .:

( c) What.: is , condition for, the image. region?

+ 2 and x E R'7 function condition?,

(a) Use the methods ,of this chapter to construct the graph

of the function g of R to R with rule x---L4.-ix2 + 3

from the graph of f : with rule x x2.

Use the graph of g to solve the equations

175
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-
1xs + 3 = 0 (ii) -3

2 2
4x2 + 2 = (iii) -

1X 2 + 5 =2

(c) Use the graph of g and the graph of y = 2x - 7 to solve

the system

y = +3

y = 2x - 7

6. Given real functions having the domains specified and codo-

main R:

T
vxs, x E R x

h 1
x E R\(0)

1
+ 3, x ER x ER

x - 2, x E R

(a) Construct the graphs of f, g, and h.

(b) Construct the graph off o of g o A, and h o I.

(c) Construct the graph of f o m, g o m, and h o m.

" 1(z)

Trace the graph of f above on, your. paper and sketch from

it the graph or

Find the local maxima and minima of ,f and of
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(c) Write the equations x = a and y = b of the vertical

and horizontal asymptotes of (estimating a and b

from your graph).

(d) Give an interval # which f is bounded. Give an

1
interval in which ? is bounded.



Chapter 5

COMBINATORICS

5.1 Introduction

The study of combinatorics had its origin in problems

involving counting. These problems may have involved, for

example, finding the number of one-to-one mappings of a set

onto itself or finding the total number of subsets of a given

set that have some specified number of members.

The above mentioned types of problems come from a class

of mathematical ideas known generally as combinatorial counting.

Although combinatorics today encompasses a much wider range of

ideas and overlaps such studies as group theory, graph theory,

and topology, as well as others, we will restrict our interest

in this chapter to combinatorial counting. Sometimes combina-

torial counting, is referred to as sophisticated counting. This

means that instead of counting each member of a set individually

when trying to determine its total number of members, it is

sometimes possible to find this number more .efficiently.

5.2 Counting Principle and'Permutations

Example 1. Suppose that A, B and C

you wish to travel from

passing through: ity B.

three roads from City A

are three cities, and

City A. to City C by

There are exactly

to City B--the red

178
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road, the blue road and the yellow road. There

are exactly two roads from City B to City C --

the green road and the orange road. How many

ways are there to make the trip from A to C?

(See Figure 5.1.)

Yellow

Figure 5.1

One way is to take the red road from A to

B, and then the green road from B to C; we shall

call this route the red-green route. All the

possible routes are shown in Table 5.1.

Roads from
A to B

Roads: from ..

3 .to-.:C:

Routes from
A to C

red green red-green

blue orange red-orange

yellow blue-green

blue-orange

yellow-green

yellow-orange

Table 5.1

179
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The total number of routes is 6. Notice

that 6 = 3 2, where 3 is the number of ways

to make the first part of the trip, and 2 is

the number of ways to make the second part of

the trip.

Example 2. Let S be the set (a,b,c,d) consisting of four

different letters of the alphabet. How many

two-letter "words" can you make using the

letters in this set? Before answering the

question, we must agree to certain rules. One

rule is that a "word" does not necessarily have

any meaning; smother rule is that a letter may

not be used more than once in the same "word,"

Thus, while. we accept "be as a "word ", we do

not accept "MD.

All possible words follow:

ab, ac, ad, ba, bc, bd ca, cb, cd, da, db, dc.

There is a total of 12 "words," As in Example 1,

there are" two choices to be made in forming a
..-

nword," First, choose the first letter'of the

"word. ", There area choices, since You may use

any one of the four letters in the set. Next,

second letter of the "word." How many

choices ars:there in this case? Not 4, since

the second letter cannot be the same as the

first. Therefore there are just 3 choices for

once the first letter hasthe second letter
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been selected. Do you see from Table 5.2 that

we have the same sort of situation as we had in

Example 1?

Number of Choices
for First Letters

Number of Choices
for Second Letter

Total Number
of Words

3 12 = 4 3

Table 5.2

Specifically, in this case we have 12 = 4 3

"swords." The "tree" diagram, Figure 5.2, is

another way to make this clear.

ab

ad

The total number

of ."words" is 12.

For each of these, there are

3 ways to make the second choice.

5.2
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The two examples just discussed illustrate a principle called

the counting principle. It may be stated as follows:

CP If an activity can be accomplished in r ways, and after

it is accomplished, a second activity can be accomplished,

in s ways, then the two activities can be accomplished,

one after the other, in rs ways.

Example 3. Suppose in Example .2 we lift the restriction

that no letter can be selected twice. If we

do so we will have four ways to select the

first letter, and then four ways to select

the second letter. Therefore we will have

4.4 = 16 distinct possible words. This result

is illustrated in the tree diagram of Figure

5.3 and suggests that we may state a more
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CP' Let A% and A, be sets with r% and r2 elements respec-

tively, where r1, ro E Z. Then A% x A2 = ((al,a2):

a%E A% and ail E An) contains ri.r2 elements.

Example 4. Given the set of letters (apepi,o,u), how many

two letter "words" can be formed, using the same

rules as in (a) Example 2? The first letter may

be chosen in 5 ways (r1 = 5). The second letter

may then be chosen in 4 ways (r2 = 4). The total

number of Nords" is 5.4 = rlra = 20. (b) Example

3? Here r1 = 2,9 = 5 and thus the total is 25 =

5.5.

One might well wonder if the counting principle CP and its general-

ization CP' can be extended to more than two sets Al and A1.

For instance suppose, in Example 4 (a) we wanted to form 3 letter

"words," Is the number of such "words" 5.43.= rirr9 = 60?

Would the number in Example 4 (b) be 5.5.5 = r1 re rs = 125?

The answer is yea, to both questions. Perhaps you might confirm

this with a tree diagram. Suppose in Example 4 (b) we ask how

many words 15 letters long can you form? Is the answer

answer main is yes.

You could of course prove it by drawing a tree diagram and counting

the 30,517:578:125 possible words.1 However to prevent you

frLn tiring, we state as Theorem 1 our general counting principle

for a finite number of non empty sets, each with a finite number

of elements. The ,proof requires the principle of mathematical

induction which is stated at the end of this chapter. After

you have gained some facility. with this principle you will be

183
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asked to write, a proof of Theorem 1. To simplify the writing

of the theorem and subsequent statements we adopt the following

notation. If a set S contains r elements we will write n(S) = r.

Theorem 1. CP Let Al, AI, ..., At be non-empty sets and

let n(Ai) = ri for i = 1, 2, K.

where each ri E e. Let Al x A2 x

At = ((al, al, ... at): ai E Ai, i =

1, 2, *so, X) Then n(A1 x x At)

rsw rt

Example 5. A direct mail firm plans to send out a letter to

an assortment of people. Each letter is to

contain four pieces of literatUre, one piece

from- each of the four cOmpanies this firm

represents. Company Al has made available six

different pieces of' literature, Company As three

pieces, Company As two pieces and Company A4

eight pieces. How many different mailings are

possible? We have

n(A1) =:;r1 a 6, n(Ai)

n(A) s ri n(

n(A1
'EA. .A x A4) r1.

288.

'Example . In.:a certain

3$

8. Therefore

r4 6.3.2.8 =

school, the student council decides

to give each student' 042 ID number consisting of

a letter of the alphabet 'followed by two digits.

What is the maximum number of students that can
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be accommodated by this procedure?

Let Al = (all letters in the alphabet),A2

(all digits). Therefore n(A1) = 26, n(A;) =

n(As) = 10. Therefore the number of ID numbers

is n(A1 x x As) = 26.10010 = 2600.

In Course II Chapter 2, Section 2.3 we defined a permutation

of a set S as 'a one-to-one mapping of the set onto itself; and

saw that if the set contains n elements, then there are n! =

n(n - 1) .2 1 such permutations. In Example 7, we shall

see that the counting principle may be used to get the same

result.

Example 7. How many permutations are there of the set

S = (a,b,c)?

Figure 5.4

As illustrated in Figure 5.4 we may choose any

one of the 3 arrows starting at a; that is, there

are 3 choices. Next, we move to b. We do not

have 3 choices since we cannot assign the same

image to lb as we did >to a, if we want a cone-to-

one mapping. So, the nuMber of choices here is

.2. Next; we move to Two of the images have

now been used. So here we have only 1 choice.

185
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To summarize: At a we have 3 choices; at b

we have 2 choices; at c we have 1 choice. The

total number of one-to-one mappings is 3 2 1 =

6 = 3: In the language of our theorem,

n(A1) = 3, n(A2) = 2, n(A3) = 1, and therefore

n(Al x A X As) = 3 2 1=

Example 8. Given the sets in Figure 5.5 how many ways are

there to make a one-to-one mapping from set A

to set B?

A B

We may choose any one of the 5 arrows starting

at 1; there are 5 choices. Then we may choose

any one of 4 arrows, starting at 2; we cannot

choose the arrow which goes to the same image

as our first arrow. Therefore, the total number

of one-to-one mappings from A to B is 5.4 = 20.

The word permutation is also used to describe a situation

such as that in Example 8. Specifically, we would say that the

number of permutations of 5 elements taken 2 at a time is 20.

In Example 8, the 5 elements are a, b, c, d, and e. And the 20

permutations of these elements taken 2 at a time are listed in
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Table 5.3.

ab ac ad ae

ba be bd be

ca cb cd ce

da db dc de

ea eb ec ed

Table 5.3

Each of these, of course, corresponds to one of the 20 mappings

mentioned in Example 8. For instance, "ab" refers to the

mapping in Fivre 5.6 (a).

(a)

(b)

Figure 5.6

187 ,
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On the other hand "ba" refers to the mapping in Figure 5.6 (b).

Thus, "ab" and "ba" are different permutations (i.e., they are

differert mappings).

Example 9. What is the number of 4-letter "words" that can

be formed from the set (a,b,c,d,e,f,g)? The

number is 7.6.5.4. (Express in the language of

Theorem 1.) This is the number of permutations

of 7 elements taken 4 at a time.

Example 10. What is the number of permutations of 10 elements

taken 3 at a time?

10.9.8 = 720

This is the number of one-to-one mappings from

a set containing 3 elements to a set containing

10 elements.

Example 11. What is the number of permutations of 5 elements

taken 5 at a time?

This is the number of one-to-one mappings from

set .A to set B, where both A and B have 5

elements. (.$ee_Figure 5.7.)

A

Figure 5.7

But the number of such mappings is the same as

the numbeig mappings of A onto itself.
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Therefore, the answer is 5! or 120.

Example 12. Suppose you had five colored flags, one in each

of the following colors: red, white, blue,

green, yellow. If you agree that a given signal

is to be represented by a particular arrangement

of three colored flags, how many different

signals could you devise using the five flags?

For example, the arrangement

RED YELLOW BLUE

might mean "Help". This problem really asks for

the number of one-to-one mappings from a set

lontainilg 3 elements to a set containing 5

elements. This number is:

5 4 3 60

In Examples 8 to 12 we have been constdering the number of

one-to-one mappings from a set A, with r members, to a set B,

with n members, where r < n. Another way to describe the number

of one-to-one mappings from a set with r members to a set with

n members (r < n) is the number -of permutations of n elements

taken r at a time.

Figure 5.8 indicates that there are n ways of finding an

image in B fo- the first selection from A, (n - 1) ways to find

the image for the second selection from A, and so on.
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This is expressed by Table 5,4,

selection from A s 2nd rd , 10th , rth

ways to find image in B n n-2 , n-9 ,,, n -(r -1)

Table 5.4

The symbol (n)r is used to represent the number of permutations

of n elements taken r at a time. Referring to the preceding

table and applying the counting principle, we can conclude that:

(n)
r
= n (n-1) (n-2) (n-(r-1))

Since n - (r-1) = n - r + 1, we could express the above formula

as follows:

(n)r = n(n-1)(n-2)(n-r+1)

Example 13. (a) (8)6 = 8.7.6.5.4 = 6720

(b) (4)6 = 4.3.2.1 = = 24

The exercises in Section 5.3 will contain specific examples

of permutations of n elements taken r at a time. An alternative

form of the general formula for (n)r will be developed in

Exercise 17 of Section 5.3.

5.3 Exercises

1. (74,r-a the set of letters (r,s,t,u,v,w,x), how many "words"

without repeated letters can be formed having:

(a) one letter

(b) three letters

(c) five, letters

(d) seven letters

2. If set B contains seven elements, how many one-to-one

mappings are there from set A to set B if set A contains:

(e) two letters

(f) four letters

(g) six letters

190
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(a) one element (b) two elements

(c) three elements (d) four elements

(e) five elements (f) six elements

(g) seven elements.

3. Use the results of Exercises 1 or 2 to answer the following:

(a) What is (7)0 (b) What is (7)9? (c) What is (7)3?

(d) What is (7)4? (e) What is (7)4? (f) What is (7)4?

(g) What is (7)0

4. How many permutations are there of the set (asb,c,d,e,f,g,h)

taken 5 at a time?

5. Suppose you have 5 books to put on a shelf. In how many

orders can the 5 books be arranged?

6. In Exercise 5, suppose there is room for only 3 of the books

on the shelf, but you may use any 3. How many arrangements

are possible? That is, what is the number of permutations

of 5 elements taken 3 at a. time?

In a certain state, the license tags consist of two letters

of the alphabet followed by three digits.

(a) How many different license "numbers" are possible?

(b) How many are possible if the letters 0 and 1 are not

used?

A telephonenumber consists of Urdigits.

(a) How many numbers are possible if there are no

restrictions?

(b) How many are possible if the digit "0" cannot be used

as the first digit?

191
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(c) How many are possible if the digit "0" cannot be used

as the first digit and also cannot be used as the

fourth digit?

If a baseball team has 10 pitchers and 4 catchers, how many

batteries (pitcher-catcher pairs) are possible?

10. If a girl has 5 blouses and 4 skirts, how many blouse-skirt

combinations can she arrange?

11. If you toss one die for a first number, then toss a second

die for a second number, how many results (ordered number

pairs) are possible?

12.

13.

14.

15.

(d)

16. Let n and r be positive integers and r < n. Give an

argument to justify:

n! = n(n 1)(n - 2) ... r + 1) [( -

17. Using the formula (n)r = n(n.- 1 )...(n - ,r + 1) and Exercise 16, gi

an argument to justify this new formula for (n)r : (n)r =
no

oft - rg

Find:

(a) (5)4 (b) (8), (c) (8), (d) (20)4 (e) (9),

(a) What is (8)3? (b) What is 8!?

(c) What is (8 - 3): (d) What is 81 ?

- 3):

What is: (a)

(d) r6447

(6)4? (b) 6! (c) (6 - 4)!?

What is: (a) (10)3 (b) 10! (c) (10 - 3)!
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18. Use the formula in Exercise 17 to find:

(a) (11)3 (b) (7)s (0) (15)3 (d) (loo)2

19. Make up permutation problems for each of the following

answers:

(a)
(S

:2)11. (b) 91 (c)(9 - 3): 5:

20. Use the formula in Exercise 17 to find the number of

permutations of 5 elements taken 5 at a time. Do you see

that the denominator is 01? 01 has no meaning, We

define 01 = 1 so that the formula in Exercise 17 holds

for all whole numbers n, r with r Kn without exception.

21. Find a standard name for each of the following:

121
(a) (a

8
_Than (b) (12 /2)1 (c) 3: + 2; + 11 + 0:

(d) Express as a product in powers of 1, 2, 3, and 4:

(41).(31).(21).(11) (e) Evaluate

I it

1=1

22. Computers use binary numbers where only 0 and 1 are used as digits.

How many 2-digit binary numbers are there? 3-digit? 4-digit?

5;4.--"The-P-Ower Set of a Set

Given a set S with n elements, we know that there are various

subsets of S that may be formed. The empty set, S itself, as

!well as one-member subsets, two-member subsets, and so on, are

examples that might be considered. The set of all subsets of

S is called the power set of S.

Definition. The power set of a set S, denoted 0(S), is the

set whose elements are the subsets of S. (Thus,

A E S (8) if and only if A c S.)

19.3
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Table 5.5 lists the power set of S, for several different sets

S. Copy and complete the table in order to test your under-

standing of the notion of a power set. Perhaps you will see

a pattern that indicates how the number of elements in the

power set of S is related to the number of elements in S.

S n( S) *(S) n(9(S))

O =0 (0)

(a) 1 (0, (a)) 2

(a,b) 2 (0, (a),(b),(a,b))

(a,b,c) 3

(a,b,c,d)

Table 5.5

Once again, we may apply the counting principle to help

us determine the total number of subsets of. a given set S.

Suppose S contains k elements; that is n(S) = k. We are

interested in forming every possible subset of S. Selecting

any one of these subsets may be thought of as a sequence of

k tasks. A task is a decision for each member of S; either

you select the first member or reject it, and likewise for the

second member, third member, andso on. In other words, there

are two possibilities for each member of S. Then, since S has

k members, the counting principle tells us that the product

of k factors, each equal to 2, is the number of ways of performing

these tasks one after the other. Each subset of S is the result

of exactly one performance of the tasks, and each performance

of the tasks results in exactly one subset of S. Accordingly

the number of subsets of a set S with k elements is:

10/i.
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2 2' .2 =

k factors

Is this the conclusion you drew when you completed Table.

5.5? In the language of Theorem 1, for each i E S, i = 1,

k let Ai = (select, reject). Therefore r1 = r, = = rk

2 = n(Ai) . Thus n(Al x Al; x x At) = r1 re
p5krk = =

If we replace the word select by the digit 1 and the word

reject by the digit 0 then Ai = (1,0) and we can reason as

follows:

The number of elements in the power set of S is equal to

the number of mappings with domain S and codomain (0,1). The

elements in S that map onto 1 are selected and those that map

onto 0 are rejected for the subset generated by that particular

mapping. Here we do not require that the mappings be one-to-one,

nor do we require that they be onto. For example, each member

of S may be mapped onto 1 and the set S itself would be the

generated subset. Likewise each member of S may be mapped onto

0 and then the empty set would be selected.

Example 1. Figure 5.9 exhibits some mappings from (a,b,c)

to (0,1) and the sets they generate.
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generates = 0

generates [a,b,c)

generates Casb)

generates (c)

Figure 5.9

Complete the rest of the mapping diagrams from (a,b,c) to (0,1)

as an exercise.

5.5 Number of Subsets of a Given Size

We will now turn our attention to the number of subsets

of S that have some given number of elements; for example the

number of subsets of (a,b,c) that have exactly two elements.

From your mapping diagrams you can see that this number is 3.

In general we will be concerned with the number of r-member

subsets of a set S with n members.
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Example 2. Suppose that {a,b,c,d,e) is a set of club

members. How many committees can be formed

which have exactly two members? The committees

are listed below:

(a,b), (a,c), (a,d), (a,e), (b,c),

(b,e), (c,d), (co), (d,e)

The number in this case is 10. This question is the same

as asking how many subsets of 2 elements can be formed from a

set of 5 elements.

In general, questions such as this may be phrased as

follows: Given a set containing n elements, how many of its

subsets contain exactly r elements? The word combination is

also used to describe this situation. Specifically, we would

ask, how many combinations are there of n elements, taken

r at a time?

In order to answer the general question, let us first look

again at the question raised in Example 2, a question whose

answer we already know. Given the set (a,b,c,d,e), how many

different subsets of 2 elements can be formed? We introduce

the symbol

to represent this number. That is, (;) is the number of subsets

of 2 elements that can be formed from a set of 5 elements.

Figure 5,10 shows a one-to-one onto mapping from the set

(1,2) to the subset (a b). The set (1,2) is used since we want

a subset having two elements. However, the diagram shows only

1



-193-

one such mapping. How many one-to-one onto mappings are there

from (1,2) to the subset (a,b)? Since (a,b) has the same number

Figure 5.10

of elements as (1,2), this is the same as the number of permutations

of a set of 2 elements--that is 21. So there are 2 different

one-to-one onto mappings from (1,2) to (a,b). (Be sure that you

can draw a diagram for each.)

Also there are 2: different one.-to-one onto mappings from

(1,2) to the subset (a,c), to the subset (a,d), etc. In fact,

there are 21 different one-to-one onto mappings from (1,2) to

every subset of S containing two elements. Now how many such

subsets are there? We have agreed to let (i) represent this

number. Thus if we form the product

2; (2)

we should get the total number of ways to form a one-to-one

mapping from (1,2) to the set S. However, from CP we know this

number is: (5)s . Therefore we have: 2: =.(5), .

Then dividing by 21 we get:

(52) = Wel"
10

Of course this agrees with our earlier observation that

there are 10 possible subsets, each with 2 persons, that can be
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formed from a club of 5 persons. We may alsc say that the

number of combinations of 5 persons, taken 2 at a time, is 10.

Example 3. Consider the problem of finding how many subsets

of 3 elements can be formed from a set of 7

elements. Again, let 10 represent this number.

To find the standard name for (7) we begin by

examining the mapping of Figure 5.11.

Figure 5.11

The diagram shows a one-to-one mapping from

(1,2,3) to the subset (a,b,c). The diagram

shows only one such mapping, but there are 3!

of them. (Why?) Furthermore, there are 3!

different one-to-one onto mappings from (1,2,3)

to every one of the (7) subsets having 3 elements.

Therefore,

3:()= (74
3

where (74 is obtained from the counting

principle. Dividing by 3! given:

L612 35
3 3; 3.2.1
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Therefore, a set of 7 elements has 35 different

3-element subsets.

The two preceding examples suggest a perfectly general

argument for finding the number of subsets having r elements

that can be formed from a set having n elements, where r < n.

Using (T1 to represent this number, we have,

Theorem 2.

r! (1 = (n)
r

Proof, Exercise 24, Section 5.6.

From Theorem 2, dividing by r: we obtain

1.! (n - r)!

Example 4. In a club with 12 members, how many 5 member

subsets are there?

121

(12) (12)6 (12 -

5 51 51

12.11.10.9.8. (7!)

7! 5!

12.11.10.9.8

5.4.3.2.1

= 792

Notice that in Example 4 each time you selected a subset

of 5 elements from the set of 12 elements, there were 7 elements

remaining that were not selected. In general, whenever you

select a subset of r elements from a set of n elements there

are n r elements remaining that are not selected. This means
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that there are just as many subsets with n - r elements as there

are subsets with r elements.

Example 5. (a) Compute (15) and (0 .

(b) Did you-get the same number for each of

the computations in part (a)?

(c) If the answer to (b) is yes explain why.

If not, do your computations again.

(d) Which of the two 1.lomputations in (a)

was easier? Why?

These results may be expressed more generally as:

Theorem 3.

n
n -

The proof is left as an exercise.

5.6 Exercises

1. In a voting body of 7 members, how many 3-man subsets are

there?

2. In a voting body of 12 persons, how many 5-man subsets are

there?

3. If set S has 6 elements, how many elements are in O(S)?

How many of these subsets have exactly 3 elements?

4. Find a standard name for each of the following:

(a) 3) (b) (110 (c) (g)

5. There are 8 books lying on the table, and you are to choose

3 of them.
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(a) How many ways are there to choose 3 books from 8?

(b) How many ways are there to choose the 3 books and

arrange them on a shelf?

6. (a) Verify the following formula for special cases of n

and m (e.g. n = 5 and m = 3):

(m 2 1)
(a 1)

*(b) Now show by using the formula,

(

(n)
r

a) r.

that formula in 6(a) is true when m < n.

7. Use the fact that the formula in Exercise 6 is true for all

natural number replacements for m and n, m < n, to complete

the following:

x - 1)

y (y + 1

What relation must hold between x and y?

8. If n is a non-negative integer, then (1) = L
9. If you can move only along the drawn

segments down and to the right, how

many paths are therefrom A to B?

(Do this by figuring the number of

paths to each point.)

10. If the numerals recorded at right

indicate the length of the segments,

find the shortest distance from A

to B. (Travel rules are those of

Exercise 9.)
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3

2

B

4 6 5
6

2 4 5

3
5

7 56

4 3
7 5 4
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11. If n is a positive integer, then (14 =

12. For n = 4, expand:

(nk)
k = 0

into a sum where each term makes use of the formula for

(11 ; then evaluate the sum and express the results in

standard form. (Hint: The first two terms of the

summation are (I0 ) and (11) .)
1

*13. Prove: n

k = 0

for any positive integral n. (Hint: For a set with n

elements count the number of subsets in two different ways.)

14. If n is a non-negative integer, then =

15. What meaning can we give to
10

? From a set of 3
.

elements, how many 5 element sets can be formed? Obviously

there are none, Therefore, we shall define.
C5/

= 0, What

standard name would you suggest for each of the following?

(a) (0 (b) (c) (d) (e)

*16. In a deck of 52 playing cards, how many 13-card hands are

possible?

17. Draw diagrams for each of the possible mappings from a set

of 3 elements to a set of 2 elements. Don't restrict the

mappings to one-to-one or onto.

18. Use the counting principle to suggest a way of expressing

the number of mappings in.Exercise 17 in exponential form.
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19. Use the counting principle to construct an argument that

justifies the following:

The number of mappings from a set of b elements to a

set of a elements is a
b

.

20. In the diagram below there are two graphs each consisting

of four nodes (points) and paths connecting the nodes by

pairs:

(a)

Graph I Graph II

Explain why each graph has C;) paths, and the total

number of paths for the two graphs is 2

In the next diagram node B is connected with each

node in Graph II to illustrate how each node of

Graph I may be connected with a path to each node

in Graph II.

Graph I

'04

Graph II
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(b) Use the counting principle to explain why there are

16 or 42 paths required to connect each node of

Graph 1 with each node of Graph II (that is to

complete it).

(c) Assuming that the above graph is completed, explain

why the number of paths is (82) or (2241

(d) Use an argument concerning the above graphs to

justify the statement: 2 M + 42 = (V) .

Use computation to justify the statement.

*21. Use the graphs and explanations in Exercise 20 for this

exercise.

(a) Suppose that you repeated the procedures in Exercise

20 using 5 nodes in each graph. Write the statement

in Exercise 20(d) for the case of 5 nodes.

(b) Revise the statement in Exercise 20(d) for n nodes.

(c) Revise the statement in Exercise 20(d) for the case

where Graph I has 6 nodes and Graph II has 4 nodes.

(a) Repeat part (c) where Graph I has n nodes and Graph

II has m nodes.

*22. Show that the following statements (a) and (b) are

equivalent:

(a) 2 (0 + no =

(b) n(n - 1) + no = n(2n - 1)

23. Use what you have learned in this chapter on combinatorics

in addition to what you learned in the chapter on affine

geometry to justify the following:

^4u
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(a) If each line in the affine plane r contains k points,

then r contains ks points.

(b) If the afire plane 7 contains ke points, then it

contains k(k + 1) lines.

*24. Prove Theorem 2.

25. Prove Theorem 3. (Hint: Use the formula developed in

Theorem 2.)

5.7 The Binomial Theorem

Example 1. Suppose that you were given the problem of

expanding the following power of a binomial:

(a + b)e = (a + o)(a + b)(a + b)(a + b)(a + b).

After some labor you would find that the

expansion of the above expression is:

as + 50b + 10a3 be + 10a2 bs + 5ab4 + bs.

The symmetry of the coefficients in the above

terms (1,5,10,10,5,1), and the decreasing powers

of a (5,4,3,2,1,0) with the corresponding

increasing powers of b (0,1,2,3,4,5) leads us to

suspect that there might be a more efficient way

to get the result without resorting to brute

force multiplication of binomials. Note also

that the sum of the exponents of a and b in

eact: term is 5.

In this section, we are going to develop a theorem, known

as the Binomial Theorem, which will be useful in expanding powers
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of binomials. It also has other applications in mathematics,

for example, to probability theory. The development of the

Binomial Theorem will make use of many ideas which you have

learned such as the power set of a given set, the number of

r-member subsets of a set with n elements, and the use of the

symbol r to indicate summation.

Example 2. To illustrate the general theorem we expand

(a + b)s by using the distributive property:

(1) (a+b)(a+b)(a+b) = a(a+b)(a+b) + b(a+b)(a+b)

(2) = a[a(a+b) + b(a+b)] +

b[a(a +.b) + b(a + b)]

(3) = a(aa + ab + ba + bb)

+ b(aa + ab + ba + bb)

(4) = aaa + aab + aba + abb

+ baa + bab + bba + bbb

(5) = as + as b + as b + abs + a2 b

+ abs + abs + bs .

(6) = as + 3a4b + 3abs + be

(7) = (1 as + (3) as b + (i) abs
0

+ (33) le

(8) 3

):

(3) -rbr

r = 0

We can get the same result using the following combinatorial

argument. We could get the terms in (4) directly from the left

side of (1) by selecting just one of a or b from each of the
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binomial factors and recording them in the order of the factors

from which they were chosen. The mapping diagrams in Figure

5.12 show all the ways that this selection can be made, where

1,2 and 3 stand for the 1st, 2nd and 3rd factors respectively

and the mapping is from [1,2,3) to (a,b).

Note that the total number of mappings is 29 = 8. (cP)

Figure 5.12

The number of times that b is selected as an image in a

mapping determines the number of times that a is selected. If

b is chosen r times, then a is chosen (3 -r) times. Check this in

the diagrams. Each mapping then is determined by the assignments

of b.

The number of mappings in which

b is the image of 0 elements is 1.

b is the image of 1 element is 3.

b is the image of 2 elements is 3.

b is the image of 3 elements is 1.

= 3.



If b is the image of zero elements then a is the image

of three elements, and thus the term which has coefficient

(6 is as.

If b is the image of one element th'n a is the image

of two elements, and thus the term with coefficient (1)

is aab.

If b is the image of two elements then we deduce as

above that the term with coefficient () is abs.
2

Similarly if b is the image of three elements then

the term with coefficient (9 is bs. Multiplying each
3

term by its coefficient and adding again yields

3 ,

3-r ra b = (a + b)s.
r O(r

You should recognize the above as a special case of ideas

presented in this chapter:

(a) The number of subsets of a set with n elements is 2n.

(b) The number of r-member subsets of a set with n elements

is (I) . The binomial theorem can now be expressed.

Theorem 4. For any pair of real numbers, a and b, and any

whole number n:
n

(n1

(a+b)n
r

r
I
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Exam le 3. Expand (a +b)e.

(a+b)e = (6a3 + (1) b +

(() ab' + be

21
asbs +

3
cob3 +

= as + 5a4b + 100132 + 100133 + 5ab' + be

Example 4. Expand (p+q)1
1

(p+01 =
r 0 '

(1) P
i-r

q
r

Pi + (1) cit

= p+q

Example 5. Expand (l+k)3.

(l+k)s = (g) 13 + 13k + (32) 1 ka + (33)

= 1 + 3k + 31e +lz3

Example 6. Expand (1.03)4.

(1+.03)4 = (g) 14 + 13(.03) + (12) 12

(.03)2 +(14) 1(.03)3 + (41) (.03)4

= 1 + .12 + .0054 + .000108 + .00000081

= 1.12550881

Examle 7. Expand (a - b)!.

(a - b)e = (a + ( -b))3. Then apply Example 3.

5.8 Exercises

1. Show that (a+b)1 = aa + tab + be is correct when a = 3 and

b 2'.

Show that (x+y)3 = x3 + 3x'y + 3xy2 + y3 correct when

1 and y = 2.



3. Expand the following:

(a) (a +b)'

(c) (c+d)'

- 206 -

(b) (x+y)a

(d) (a+b)5°

4. (a -b)3 = (a + (-b))3 = as + 2a(-b) + (-b)9 = a3 - tab + b3

Using a similar approach, expand the following:

(a) (a-b)a (b) (x -y)'

(c) (a-b)a (d) (x-y

5. The coefficients in the expansion of (a+b)n are as follows:

1 11 55 165 330 462 462 330 165 55 11 1

What is n?

6. Expand (a) (x + 1)3 (b) (x - 1)3

7. Expand (a) (x + 2)' (b) (x 2)' (c) (x -

8. Expand (a) (2x + 1)a (b) (2x - 1)8,

9. Find the first 3 terms of: (a) (x - 1)*0 (b.) (x + )a (c) (-2x -1)'.

10. Expand (1+1)n to show that it equals 1! inl

klak = 0

11. Use the binomial expansion to find (1.01)5; also (.99)5.

*12. Show that (1+x)n.1.1 + nx, for x > 0 and n E

*13. Use the combinatorial argument to prove (a+b)s =

6

57 (61 ee

r 0127

5.9 Mathematical Induction

An interesting unsolved problem in mathematics is to find

a function f with the property that whenever n is a natural
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number then f(n) is a prime number. The story is told of the

student who presented the following proposition as a solution

to the problem:

If n is a natural number, then n
2

- n + 41 is
a prime number.

The student had much cause to think he was correct. If n is

replaced by 1, then n
2

- n + 41 = 41, which is prime. If n

is replaced by 5, then n
2

- n + 41 = 61, which is also prime.

In fact, if n is replaced by any natural number up to and

including 40, a' rime number is produced. Not until n is

replaced by 41 does the expression n2 n + 41 produce a

number that is not prime. This student had generalized his

argument to all natural numbers based upon his successful

experience with some of them.

We observe that we must be careful before stating such

generalizations. A statement may be true for many natural

numbers and yet not be true for all of them. How do we prove

that a given formula or statement is true for all natural

numbers?

Suppose you were asked to find the sum of all natural

numbers, beginning with 1 andending with 8; that is

1 2 + 3 + 4 + 5 + 6 + 7 + 8.

After all the challenging work that you have been exposed to in

previous chapters, this problem probably appears trivial and

routine. Tbe sum is 36. You may suspect that instead of

finding the sum by adding up the numbers, one by one, there is

a much shorter way to arrive at the same answer. One way 2.;,. as



follows:

(1) find the average of the first and last numbers in

your sum;

(2) multiply this average by the number of terms in your

sum.

Thus, we could have found the average of 1 and 8

1 + 8

and then multiplied by 8:

8q1±11 = 84 . 72 = 36,
2 1 2 2

If you now repeat the problem, ending the sum with 11 instead

of 8, you get

I + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 11(1+11)

132
66.

'2
Suppose we wish to establish a general formula for adding all

the natural numbers, beginning with I and ending with n. The

process described above indicates.that

I + 2 + 3 4 4 + + n = n.(1+n) .

2
We now know that this formula:is true when n = 8 and

n = 11; we could even verify that it is true for all natural

numbers up to and including 40, as in the first problem.

HoweVer, Ourexperience-tells us that this:amount of evidence

is not not be sure that the formula,

is true for all naturalnuMbers.

Visualize a, stringHof upright dominoes, equally spaced and

close 'enough together seithat.any fallingdoMinowould.hit its

2
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neighbor. (Assume that if a domino is hit from one side it

falls to the other side.) Now, if the first domino is pushed

over towards the second, the second will fall and push over the

third; the third will then push over the fourth which will then

push over the fifth. This would continue until all the

dominoes are down. The situation appears to fit the following

pattern:

(1) The first domino falls down:

(2) Whenever a particular domino falls, the next one

falls too.

Thus, all the dominoes fall down.

Let us see how the "domino effect" can help us to formulate

a procedure for showing that

1 + 2 + 3 + + n = n(n+1),

2

is true for all natural numbers n. Suppose we consider the set

of all natural numbers for which the above statement is true;

call this set S.

S = (x:x f e and 1 + 2 + 3 + + x = x(x+1))

2
We already know that 8 E S and 11 E S. We would like to show

that S contains every natural number; that is S =

Just as the dominoes were equally spaced, the difference

between consecutive natural nuMbers is always the same. Just

as the first domino had to fall to start the process, the

natural number 1 must be in S. But the dominoes had to be

arranged so that whenever a particular domino fell, the next.

one would fall too. The analogous requirement in our problem

214
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is that whenever a particular natural number k is in S, then

the next larger natural number k + 1 must also be in S. Just as

we could visualize that all the dominoes would fall, it seems

plausible to conclude here that all the natural numbers would be

in S.

These thoughts are summarized and expressed in a postulate

about the natural numbers called the Principle of Mathematical

Induction. (We shall denote this by "PMI.") It is important

to note that the foregoing discussion does not constitute a

mathematical proof; it was designed simply to indicate the

plausibility of postulating PMI.

Axiom PMI. Let T be a set of natural numbers having the
following two properties:

(1) 1 E T.

(2) Whenever the natural number k E T, then (is + 1)

E T.

Then, T is the set of natural numbers. (T = Z4)

We are now in a position to show that set 8 defined in our original

problem is the set of natural numbers. We already know that 1 E S.

Let us now show -that whenever the natural number k E S then

+ 1) E 8.

Proof. (x:x E e and 1 + 2 ...+ x = x. 1+

Let k E S. This means that

I, 1 + 2 +, 3 + 4 k = 1E41 k)

would like to show that (k + 1) E S that is:

11. 1 + 2 + 3 + + k + + 1) = (k + 1)ri + (k + 1)1_

2

415
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We notice that the left sides of I and II differ only by the

term (k + 1). Let us add (k + 1) to both sides of I anu see

what we obtain.

1 + 2 + 3 + 4 +, + k (k + 1) = k(1 + k) + (k + 1)

= kjk
2
+ k +1) + 2( 1)

= k +1 k +21

= (k + 1)(1 + (k + 1)]
2

Thus, (k + 1) E S.

By EMI, we may conclude that S = Z. In other words,

the statement 1 + 2 + 3 +... +n = n(1 + n) is true
7ff--

for all natural numbers.

Example 1. In Section 5.8, Exercise 12, you were asked to

show that (1 + x)n. 1 + nx, for x > 0 and n E Z.

At that time, you probably had to rely on the

Binomial Theorem for your proof. Let us now

apply PMI.

Let T = (x:x E Z./. and (1 + x)n 2 1 + nx)

Since (1 + x)1 = 1 + lx, we see that 1 E T.

Assume k E T. This means that

(1 + x)k 1 + kx.

But, (1 + x)k = (1 + x)k. (1 + (1 + kx)(1 + x).

(1.+ kx)(1 + , 1 4- kX + 3C > 1 + kx + x =

1 + (k + 1)x

1 + (k + 1)x which means that

By PHI, T
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In Section 5.4 we discussed the power set of a set S,

denoted 61(8). By means of the counting principle, it was shown

that if n(S) = p, then n(9(S)) = 2P. Let us now analyze this same

problem in a different way. First, we define a function f whose

domain is Z
+ and whose codomain is a set of statements. If x E Z

+

then f(x) or simply fx is the statement:

If n(S) = x, then n(60(0) = 2x.

For example, f1 is the statement: If n(S) = 1, then n(9(S)) = 21,

and flp is the statement: If n(S) = 9, then n(9(S)) = 2..

Recall from Course I that a function whose domain is the set of

natural numbers is called a sequence. Thus f is a sequence.

Since the codomain of f is a set of statements, we refer to the

images f1, fs, f4,...fn,... as a sequence of statements. We

are interested in showing that every statement in the sequence of

statements is true. Paralleling the discussion in the earlier part

of this section, it seems reasonable to expect the Principle of

Mathematical Induction to apply equally well to a sequence of

statements. An equivalent1 form of this principle, which we shall

denote by "MI" is stated as follows:

Axiom PIMP. Let P1, Fe, Fs, FX, ... be a sequence of

statements having the following two properties:

(1) F1 is true

(2) Whenever Fk k+s
is true, then F is true.

Then, for each natural number x, Fx is true.

1TWo statements, .A and B, are said to be equivalent if A
implies B and ,B implies A. In this context, it is possible to
prove that PRI implies PMI' and PIMI, implies PE.
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We now have the mathematical machinery available for showing that

the sequence of statements f1, fit, c,

defined as the statement

If n(S) = x, then n(9(S)) = 2x,

is true for all natural numbers x.

f
x
1 whera f

x
was

Proof. ft is the statement:

If n(S) = 1, then (P(S)) = 2

If S consists of a single element, say S = (a),

then the only subsets of S are (a) and O. Thus,

n(9(S)) = 2 = 21. We see that ft is true. Let

us assume that f
k

is true and show that f
k+s

must then be true too. Assume that when n(S) = k,

then n(9(S)) = 2k. If a new element, say b, is

added to set 8, the resulting set S' will have

(k + 1) elements. We are interested in determining

the total number of subsets of S'. Observe that each

subset of S is also a subset of 8'. Thus, we obtain

the subsets of 8', first by taking every subset of

S. In addition, the element b may be adjoined to

each of these subsets in succession to form new

subsets of S'. It is clear that if two subsets of

P are distinct, then the adjunction of b to each

set produces two distinct subsets of W. Thus, the

number of subsets of 8' is twice the number of

subsets of S. Since S contains 2k subsets, S' must



contain 2.2k

n(S) = k + 1,

f
k+i

is true.

By PMI', we conclude that every statement in the

sequence is true.
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= 2
k+1

subsets. Consequently, if

k+I.
then 061(S)) This means that

You have now seen two versions of the Principle of Math-

ematical Induction, PMI and PMI'. The one to use depends upon

your interpretation of a problem. For example, the theorem just

proved in the preceding discussion -- for every natural number x,

if set S contains x elements, then its power set contains 2x

elements -- was interpreted as a sequence of statements 4, fe,

fo,..., one statement for each natural number xo Thus, the proot

depended upon PMI'. An alternate interpretation and analysis of

the same problem might have been as follows:

Let T = (x:x E e and 060(S)) = 2x whenever n(S) = x).

By showing that

(a) 1 E T and

(b) whenever k E T, then (k + 1) E T

we could have concluded, by PMI, that set T contains every

natural number.

Example 2. Show that for all natural numbers n, 5n n

is a natural number.

Proof. Consider the sequence of statements 4, fs, fe,

fn,... where fn is the statement:

n is a natural number.
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Since 51 - 21 = 3 = 1, we see that f1 is true.

Assume fk is true; that is

5
k

- 2
k is a natural number, say p.

k ,k

P.

Thus, 5k = 3P + 2k (Why?)

We want to show that fk+s
must also be true.

ow, 5
k+1 - 2

k+1
=

k
'5 2k2

3

2k)= (3p + 2 - 2k2,

= 15p + 2k(5 - 2)
3

15p 4. 2k..,

3

5p + 2

5p + 2k is a natural number. (Recall that (Z+,+)

and Z s) are operational systems.)

Thus fk4s is true. By PMI', all of the statements

in the sequence ft, 11, are'true. Thus,

for every natural number no 111 i8 a natural

number.
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The notation "..." within a mathematical statement about the

natural numbers is often a signal that the Principle of

Mathematical Induction may be used to prove the statement.

Example 3. 2 + 4 + 6 + ...+ 2n = n(n + 1) is the assertion

that for all natural numbers n, the sum of the

even numbers, beginning with 2 and concluding

with 2n, is equal to the product of n and the

next larger natural number, n + 1. If n = 1,

the sum begins with 2 and ends with 2; consequently,

there is just one term to be considered. If

n = 5, the sum becomes 2 + 4 + 6 + 8 + 10. A

simple check of both the sum and the product

for n = 5 gives an answer of 30. Let us apply

FMI to prove that Example 3 is true for all

natural numbers.

Proof. Let T = (x:x E e and 2 + 4 + 6 +...+ 2x = x (x + 1)).

Since 21 = 1(1 + 1), we see that 1 E T.

Suppose k E T. This means that

2 + 4 + 6 2k k(k + 1).

(Why?)Add 2(k 1) to both sides.

2 + 4 + 6 +...+ 2k .+ 2(k + 1) = k(k + 1) + 2(k + 1)

(k + 1)(It + 2)

Thus, (k + 1)E T, By PIKE, T =

Can you see why 'it is essential to snow that 1 E T? Why is

it not sufficient to show that

whenever k E T, then (k+ 1) E Ti'

4701
441
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Consider the following assertion:

For all natural numbers x, x: > 2x.

Let T = (x:x E e and x: > 2x) and suppose that k E T. This means

that k! > 2
k

. Then,

(k + 1)! = (k + 1)..k; > (k + 2.2k 2k+1.

Thus, (k + 1) E T. Could we conclude, at this point, that for

every natural number x, x: > 2x? Table 5.6 compares the value

of x: and 2x for x = 1, 2, 3, 4, and 5.

x 2x

1 1 2

2 2

6 8

24 16

5 120 32

Table 5.6

It is not true that x: > 2x for every natural number x. Not until

x a 4 do we get a true statement. What we were able to prove in

the preceding discussion is that if k! > 2k, for some natural

namber k, then a similar statement is true for the next larger

natural number (k + 1). However, we had not shown that x: > 2x

is ever true for any particular natural number, k. Do you now see

why the principle of Mathematical Induction includes the require-

ment that 1 E

Before we leave the statement x: > 2x, let us review what

has been established. We know that if T E Z and > 2
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(a) f T; 2 g T; 3 f T

(b) 4 E T

(c) whenever k E T, then (k + 1) E T.

How do we know that 5 E T? 6 E T? in fact, any natural number

x > 4? This thinking leads to a modification of the Principle

of Mathematical Induction, allowing us to apply it to a greater

variety of situations involving the natural numbers.

Axiom General PKI. Let T be a set of natural numbers having
the following two properties:

(1) the natural number a E T

(2) Whenever the natural number k E T,
then (k + 1) E T.

Then, T consists of all natural numbers
greater than or equal to a.

5.10 Exercises

1. Use PHI or PHII to prove each of the following:

r)t

s a natural number for every r C

a a natural number for every n E

( ) for ever, n

(g) 1 for every n Z
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2. Prove Theorem 1 in Section 5.2, using mathematical induction.

3. How does the principle of mathematical induction differ from

the usual meaning of the word "induction"?

4. Let T = (n:n E e and n = n + 1).

Assume k E T and show that (k + 1) E T. Does this mean that

T = Z
+,

Defend your answer.

5. Consider a polygon of n sides, where n > 3. Prove that the

total number of diagonals that can be drawn is n(n - 3) .

2

(A diagonal is a line segment that joins two non-consecutive

vertices.)

6. Prove or disprove the following assertion:

For every natural number n, 2n > 3n.

If this statement is not true, modify it so that a true

statement results.

Let a and r be real numbers, r 1. Prove that for every

E

Attempt to prove

each one, using some form of the principle of mathematical

tell where the principle fails.

for every x E

(b) The statement

If 10 n the 10I(n + 10)

is true for elrery n E Z+. Therefore, we

may say that every natural humber is divisible

by 10.
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(c) 3 + 5 + 7 +...+(2n + 1) = ne +2 for every

n E

(d) 100n > no for every n E

9. Given the statement

For every n E Z
+ 2n < 2

n

present two different proofs, using PKI in one case and PMI'

in the other. If the expression "2n < 2n" is replaced by

"2n < 211", is the result still true? If not, what changes

would you make so that a true statement emerges?

10. Prove that for every n E Z+,

1 + 2 + 3 + 4 +...+ n = n + (n -

5.11 Summary

. The counting principle was illustrated for two and three finite

sets and stated as a theorem for any finite number of sets.

If a set A contains a elements and set B contains b elements

(a < b), the number of different one-to-one mappings from

A to the number of permutations of ;b elements taken

a at a time, (a and b are whole numbers) written (b)

If a b,

+ (n - 2) + (n - 3) +...+ 1

B is called

then the number of permutations is W.

If a < b then the number of permutations is b(b - 1)(b

(b a 1).

0! is defined to be 1.

represents the number of subsets with r elements which

can be formed from a set of n elements, where n and r are

whole numbers.

,



If n < r, then (1.21,) = 0.

If n = ro then M = 1.

If r = 0, then for any n,
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In general
(n)r

for n > r.

5. (The Binomial Theorem). If a and b are real numbers and n

is a whole number then n

n -1n nl n 11 n n
(h

a D
) n-r.r

b) fa 1Lb iu
kir knr

r=0

6. Principle of Mathematical Induction

(a) Let T be a set of natural numbers having the following

two properties:

(1) 1 E T.

(2) Whenever the natural number k E T, then

(k + 1) e T.

Thep, T contains all the natural numbers.

(b) Let 211, Fi be a sequence of statements

having the following two properties:

(1) PI is true.

(2) Whenever Fk is true then Pk is true.

Then, for each natural nuMber x, Fx is true.

5.12 Review Exercises

1. How many six-letter words" cane be formed from the set

(tohoesoirjoy) if

(a) letters may not be repeated?

lettert may be repeated?

1
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2. A man conducts a probability experiment in which he does the

following three things: he draws a marble from a bag of five

differently colored marbles and records its color; then he

tosses a die, recording the number the die shows; then he

tosses a coin, recording the result "head" or "tail". How

many possible outcomes are there in this experiment?

*3. In Exercise 2, what is the probability he will get an even

number and a head?

4. If the call letters of a radio station must begin with "W"

and contains three other letters (repetitions allowed) how

many such arrangements of letters are there?

What is the answer to Exercise 4 if the call letters may

begin with either "W" or "K"?

6. A person wishes to select 2 books from a set of 6 books.

Hbw many possible selections are there?

There are 5 points in a plane, no three of them in a line.

How many, lines can be drawn with each line passing through

exactly 2 of the points?

Hbw many ways are there to arrange 3 books on a shelf if you

from?

10.

have 8 books to choose

Hbw many possible committees of 3 are there in a class of

8 Persona?

Draw a "tree" diagram showing all the 2-lettere worde(no

repetition) which can be formed from the set (a,e,i,o,u).

11. If, from a set of`7 mathematics books and 5 history books,

you must choose 1 mathematics book and 1, history book, in

how many ways can you make your choice?
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12. How many fractions can be formed having a numerator greater

than 0 and less than 10, and a denominator greater than 0

and less than 15?

13. How many 3-digit numbers are there? (There are 10 digits to

choose from, but the first digit cannot be 0.)

14. Referring to Exercise 13:

How many 3-digit numbers have no two digits alike?

How many 3-digit numbers have 3 digits alike?

How many 3-digit numbers have exactly 2 digits alike?.

15. For each of the following, tell how many one-to-one mappings

are possible from set A to set B.

(a) (b) (c)

1 . What is the number of permutations of 8 elements taken 2 at

a time? of 10 elements taken 6 at a time ?'

17, A set has 10 elements,

(a) How many of its subsets have exactly 3 elements?

(b) Hcmr many of its subsets have exactly 7 elements?

(c) How many of its subsets have exactly 10 elements?

(d) How many of its subsets have exactly 1 element?

(e) How: many of its subsets have exactly 0 elements?

18, Barbara would like to take 5 books ,.2 mathematics puzzle books

and 3 novels with her on her vaction, Her library contains

.5 PutzlebOoka.and..10,:noVels, .Itubolf.manyltayecould.she--

select her.. 5 booke-
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19. Find a standard name for each of the following:

(a) (b) (c) (76) (d) (;) (e) (10

20. A student is instructed to answer any 8 of 10 questions on

a test. How many different ways are there for him to choose

the questions he answers?

21. A basketball squad consists of four centers, five forwards,

and six guards. How many different teams may the coach form

if players can be used only at their one position? (A

basketball team consists of 1 center, 2 forwards and two

guards.)

22. A sample of five light bulbs is to be taken from a set of

100 bulbs. How many different samples may be formed?

23. Complete the following: (0 + (;)

24. Expand (a + b)4.

25. Expand (a - b)4.

26. Write the first 6 terms in the expansion of (a + b)n, where
1

n is a positive integer greater than 6.

EXpand (2u +

Prove by inductions

*29

n + 2

2 2n

If n(A) = x and n(B) y and there are exactly 720 1 to 1

mappings from set A into set B, find values for x and y.

30. If () = 15 and set S'has n elements, how many subsets
7

does S have?
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*31. The figure above represents a circuit diagram which consists

of three switches a, d, C. If switch a and switch d are

closed, the light will go. on. If a, d, and c are closed,

the light will also go on. However, if only d and c are

closed, the light will not go on.

(a) In how many different ways can the switches be closed

to turn on the light?

(b) In how many different ways can the switches be closed

to turn on the light in the diagrams below?



(c)
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Diagram IV has 5 switches in parallel connections. If

a parallel circuit had 8 switches in it, how many

ways could the light be turned on?
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